Hui-Ying Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3470307/hui-ying-yang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 14,251 105 303 h-index g-index citations papers 17,062 7.12 324 9.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
303	Topotactic Epitaxy Self-Assembly of Potassium Manganese Hexacyanoferrate Superstructures for Highly Reversible Sodium-Ion Batteries <i>ACS Nano</i> , 2022 ,	16.7	1
302	Size and composition regulated sodium vanadium fluorophosphate wrapped in rGO as an efficient cathode for brackish and seawater desalination. <i>Desalination</i> , 2022 , 528, 115514	10.3	
301	3D porous H-Ti3C2T films as free-standing electrodes for zinc ion hybrid capacitors. <i>Chemical Engineering Journal</i> , 2022 , 435, 135052	14.7	1
300	Defect-Engineered 3D hierarchical NiMoS nanoflowers as bifunctional electrocatalyst for overall water splitting. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 1876-1887	9.3	9
299	Fabrication of Li1.4Al0.4Ti1.6(PO4)3 quasi-solid electrolyte with high conductivity and compatibility through AAO template. <i>Applied Physics Letters</i> , 2022 , 120, 191902	3.4	4
298	Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis <i>Nature Communications</i> , 2022 , 13, 2430	17.4	7
297	Recent advances in kinetic optimizations of cathode materials for rechargeable magnesium batteries. <i>Coordination Chemistry Reviews</i> , 2022 , 466, 214597	23.2	1
296	MXene-Based Materials for Electrochemical Sodium-Ion Storage. <i>Advanced Science</i> , 2021 , 8, e2003185	13.6	17
295	Unlocking Rapid and Robust Sodium Storage Performance of Zinc-Based Sulfide Indium Incorporation. <i>ACS Nano</i> , 2021 , 15, 8507-8516	16.7	9
294	Combination of heterostructure with oxygen vacancies in Co@CoO1-x nanosheets array for high-performance lithium sulfur batteries. <i>Chemical Engineering Journal</i> , 2021 , 411, 128546	14.7	13
293	Rational design of MXene-based films for energy storage: Progress, prospects. <i>Materials Today</i> , 2021 , 46, 183-211	21.8	19
292	Porosity Engineering of MXene Membrane towards Polysulfide Inhibition and Fast Lithium Ion Transportation for Lithium-Sulfur Batteries. <i>Small</i> , 2021 , 17, e2007442	11	14
291	Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries. <i>Nano Energy</i> , 2021 , 85, 105969	17.1	22
2 90	Metal Ion-Induced Assembly of MXene Aerogels via Biomimetic Microtextures for Electromagnetic Interference Shielding, Capacitive Deionization, and Microsupercapacitors. <i>Advanced Energy Materials</i> , 2021 , 11, 2101494	21.8	12
289	Electric field modulated ion-sieving effects of graphene oxide membranes. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 244-253	13	2
288	Design of Black Phosphorous Derivatives with Excellent Stability and Ion-Kinetics for Alkali Metal-Ion Battery. <i>Energy Storage Materials</i> , 2021 , 35, 283-309	19.4	2
287	Recent Tactics and Advances in the Application of Metal Sulfides as High-Performance Anode Materials for Rechargeable Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2006761	15.6	26

(2021-2021)

286	Bismuth Oxide Selenium/Graphene Oxide Composites: Toward High-Performance Electrodes for Aqueous Alkaline Battery. <i>Energy and Environmental Materials</i> , 2021 , 4, 465-473	13	6
285	Tungsten disulfide-reduced GO/CNT aerogel: a tuned interlayer spacing anode for efficient water desalination. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10758-10768	13	11
284	Quasi-solid electrolyte developed on hierarchical rambutan-like EAlOOH microspheres with high ionic conductivity for lithium ion batteries. <i>Nanoscale</i> , 2021 , 13, 13310-13317	7.7	1
283	One-Pot Confined Epitaxial Growth of 2D Heterostructure Arrays 2021 , 3, 217-223		4
282	Confining Sb2Se3 nanorod yolk in a mesoporous carbon shell with an in-built buffer space for stable Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 3388-3397	13	8
281	A minireview on chemical vapor deposition growth of wafer-scale monolayer -BN single crystals. <i>Nanoscale</i> , 2021 , 13, 17310-17317	7.7	1
280	A membrane-less desalination battery with ultrahigh energy efficiency. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7216-7226	13	2
279	The design of flower-like CMnO2 nanosheets on carbon cloth toward high-performance flexible zinc-ion batteries. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9675-9684	13	10
278	Highly efficient and stable ionic liquid-based gel electrolytes. <i>Nanoscale</i> , 2021 , 13, 7140-7151	7.7	5
277	Unveiling the Relationship between the Surface Chemistry of Nanoparticles and Ion Transport Properties of the Resulting Composite Electrolytes. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 642-	-649	1
276	Defect and DopingICo-Engineered Non-Metal Nanocarbon ORR Electrocatalyst. <i>Nano-Micro Letters</i> , 2021 , 13, 65	19.5	49
275	ZnSe Modified Zinc Metal Anodes: Toward Enhanced Zincophilicity and Ionic Diffusion. <i>Small</i> , 2021 , 17, e2101728	11	24
274	Hierarchical Co3O4/CNT decorated electrospun hollow nanofiber for efficient hybrid capacitive deionization. <i>Separation and Purification Technology</i> , 2021 , 266, 118593	8.3	7
273	Improved thermal and structural stabilities of LiNi0.6Co0.2Mn0.2O2 cathode by La2Zr2O7 multifunctional modification. <i>Applied Physics Letters</i> , 2021 , 119, 093902	3.4	2
272	Efficient Ohmic contacts and built-in atomic sublayer protection in MoSi2N4 and WSi2N4 monolayers. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	25
271	Conformal coating of lithium-zinc alloy on 3D conducting scaffold for high areal capacity dendrite-free lithium metal batteries. <i>Carbon</i> , 2021 , 181, 99-106	10.4	6
270	Reproducible X-ray Imaging with a Perovskite Nanocrystal Scintillator Embedded in a Transparent Amorphous Network Structure. <i>Advanced Materials</i> , 2021 , 33, e2102529	24	47
269	A crystalline dihydroxyanthraquinone anodic material for proton batteries. <i>Materials Today Energy</i> , 2021 , 22, 100872	7	2

268	Prompting structure stability of O3NaNi0.5Mn0.5O2 via effective surface regulation based on atomic layer deposition. <i>Ceramics International</i> , 2021 , 47, 28521-28527	5.1	2
267	Electrochemically activated layered manganese oxide for selective removal of calcium and magnesium ions in hybrid capacitive deionization. <i>Desalination</i> , 2021 , 520, 115374	10.3	3
266	Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. <i>Nano Letters</i> , 2021 , 21, 823-832	11.5	32
265	Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 6013-6028	13	30
264	Recent Advances in Heterostructure Engineering for LithiumBulfur Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2003689	21.8	79
263	Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Materials & Ladder Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Mechanisms of Ion Transport in Prussian Blue Analogues ACS Applied Mechanisms of Ion Transport in Ion Transport in Prussian Blue Analogues ACS Applied Mechanisms of Ion Transport in Ion Transport in Ion Transport in Ion Trans	9.5	4
262	Self-templated formation of (NiCo)S yolk-shelled spheres for high-performance hybrid supercapacitors. <i>Nanoscale</i> , 2020 , 12, 23497-23505	7.7	8
261	Integrated NiCo2-LDHs@MXene/rGO aerogel: Componential and structural engineering towards enhanced performance stability of hybrid supercapacitor. <i>Chemical Engineering Journal</i> , 2020 , 396, 125	1 94 .7	50
2 60	Electrical Contact between an Ultrathin Topological Dirac Semimetal and a Two-Dimensional Material. <i>Physical Review Applied</i> , 2020 , 13,	4.3	11
259	Unconventional Mn Vacancies in Mn E e Prussian Blue Analogs: Suppressing Jahn-Teller Distortion for Ultrastable Sodium Storage. <i>CheM</i> , 2020 , 6, 1804-1818	16.2	46
258	Undercooling-directed NaCl crystallization: an approach towards nanocavity-linked graphene networks for fast lithium and sodium storage. <i>Nanoscale</i> , 2020 , 12, 7622-7630	7.7	7
257	Regulating the breathing of mesoporous Fe0.95S1.05 nanorods for fast and durable sodium storage. <i>Energy Storage Materials</i> , 2020 , 32, 151-158	19.4	21
256	Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals. <i>Advanced Materials</i> , 2020 , 32, e1907404	24	76
255	3D Printed Compressible Quasi-Solid-State Nickel-Iron Battery. ACS Nano, 2020, 14, 9675-9686	16.7	32
254	Rechargeable Aqueous Zinc-Ion Batteries in MgSO/ZnSO Hybrid Electrolytes. <i>Nano-Micro Letters</i> , 2020 , 12, 60	19.5	26
253	Super Kinetically Pseudocapacitive MnCo2S4 Nanourchins toward High-Rate and Highly Stable Sodium-Ion Storage. <i>Advanced Functional Materials</i> , 2020 , 30, 1909702	15.6	23
252	Interface engineering by atomically thin layer tungsten disulfide catalyst for high performance LiB battery. <i>Materials Today Energy</i> , 2020 , 16, 100380	7	10
251	Capacitive Deionization of Divalent Cations for Water Softening Using Functionalized Carbon Electrodes. <i>ACS Omega</i> , 2020 , 5, 2097-2106	3.9	19

(2020-2020)

250	Boosted electrochemical ammonia synthesis by high-percentage metallic transition metal dichalcogenide quantum dots. <i>Nanoscale</i> , 2020 , 12, 10964-10971	7.7	14
249	3D-printed functional electrodes towards Zn-Air batteries. <i>Materials Today Energy</i> , 2020 , 16, 100407	7	23
248	Morphological and Electronic Dual Regulation of Cobalt-Nickel Bimetal Phosphide Heterostructures Inducing High Water-Splitting Performance. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3911-3919	6.4	18
247	Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. <i>Nanoscale</i> , 2020 , 12, 4341-4351	7.7	40
246	Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage. <i>Nano Energy</i> , 2020 , 69, 104389	17.1	29
245	Controllable Synthesis of Two-Dimensional Molybdenum Disulfide (MoS) for Energy-Storage Applications. <i>ChemSusChem</i> , 2020 , 13, 1379-1391	8.3	29
244	A Selective Reduction Approach to Construct Robust Cu1.81S Truss Structures for High-Performance Sodium Storage. <i>Matter</i> , 2020 , 2, 428-439	12.7	18
243	High speed capacitive deionization system with flow-through electrodes. <i>Desalination</i> , 2020 , 496, 1147	50 0.3	6
242	Quantum dot-carbonaceous nanohybrid composites: preparation and application in electrochemical energy storage. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22488-22506	13	9
241	Flexible and additive-free organic electrodes for aqueous sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22791-22801	13	6
240	Ocean Mining: A Fluidic Electrochemical Route for Lithium Extraction from Seawater 2020 , 2, 1662-166	8	3
239	Nanoframes@CNT Beads-on-a-String Structures: Toward an Advanced High-Stable Sodium-Ion Full Battery. <i>Small</i> , 2020 , 16, e2005095	11	6
238	Stepwise Intercalation-Conversion-Intercalation Sodiation Mechanism in CuInS2 Prompting Sodium Storage Performance. <i>ACS Energy Letters</i> , 2020 , 5, 3725-3732	20.1	15
237	A review on free-standing electrodes for energy-effective desalination: Recent advances and perspectives in capacitive deionization. <i>Desalination</i> , 2020 , 493, 114662	10.3	31
236	An energy efficient bi-functional electrode for continuous cation-selective capacitive deionization. <i>Nanoscale</i> , 2020 , 12, 22917-22927	7.7	7
235	Direct antimony recovery from wastewater as anode materials for sodium-ion batteries. <i>Materials Today Energy</i> , 2020 , 16, 100403	7	6
234	Boosting chem-insertion and phys-adsorption in S/N co-doped porous carbon nanospheres for high-performance symmetric Li-ion capacitors. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11529-11537	13	17
233	Microstructural Engineering of Cathode Materials for Advanced Zinc-Ion Aqueous Batteries. Advanced Science, 2020 , 8, 2002722	13.6	21

232	Reversible Sodium Storage: Promoting Highly Reversible Sodium Storage of Iron Sulfide Hollow Polyhedrons via Cobalt Incorporation and Graphene Wrapping (Adv. Energy Mater. 33/2019). <i>Advanced Energy Materials</i> , 2019 , 9, 1970127	21.8	1
231	High-Concentration Niobium-Substituted WS Basal Domains with Reconfigured Electronic Band Structure for Hydrogen Evolution Reaction. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 34862-348	388	11
230	Boosting Sodium Storage of FeS/MoS Composite via Heterointerface Engineering. <i>Nano-Micro Letters</i> , 2019 , 11, 80	19.5	47
229	Effects of precursor pre-treatment on the vapor deposition of WS2 monolayers. <i>Nanoscale Advances</i> , 2019 , 1, 953-960	5.1	7
228	Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5989-5998	9.5	64
227	Location-selective growth of two-dimensional metallic/semiconducting transition metal dichalcogenide heterostructures. <i>Nanoscale</i> , 2019 , 11, 4183-4189	7.7	10
226	Dual-Ion Electrochemical Deionization System with Binder-Free Aerogel Electrodes. <i>Small</i> , 2019 , 15, e1805505	11	48
225	Germagraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations. <i>Nanoscale Horizons</i> , 2019 , 4, 457-463	10.8	36
224	Polypyrrole coated niobium disulfide nanowires as high performance electrocatalysts for hydrogen evolution reaction. <i>Nanotechnology</i> , 2019 , 30, 405601	3.4	4
223	Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries. <i>Frontiers of Chemical Science and Engineering</i> , 2019 , 13, 493-500	4.5	3
222	Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. <i>Energy Storage Materials</i> , 2019 , 23, 17-24	19.4	49
221	Activated derived biowaste carbon for enhanced desalination performance in brackish water <i>RSC Advances</i> , 2019 , 9, 14884-14892	3.7	10
220	Explicating the Sodium Storage Kinetics and Redox Mechanism of Highly Pseudocapacitive Binary Transition Metal Sulfide via Operando Techniques and Ab Initio Evaluation. <i>Small Methods</i> , 2019 , 3, 190	0 1 278	14
219	Surface modification of Na2Ti3O7 nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12751-12762	13	56
218	Rhenium disulfide nanosheets/carbon composite as novel anodes for high-rate and long lifespan sodium-ion batteries. <i>Nano Energy</i> , 2019 , 61, 626-636	17.1	29
217	The efficient faradaic Li4Ti5O12@C electrode exceeds the membrane capacitive desalination performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8912-8921	13	19
216	3D self-branched zinc-cobalt Oxide@N-doped carbon hollow nanowall arrays for high-performance asymmetric supercapacitors and oxygen electrocatalysis. <i>Energy Storage Materials</i> , 2019 , 23, 653-663	19.4	56
215	Free-standing flexible film as a binder-free electrode for an efficient hybrid deionization system. Nanoscale, 2019 , 11, 5896-5908	7.7	18

214	An all manganese-based oxide nanocrystal cathode and anode for high performance lithium-ion full cells. <i>Nanoscale Advances</i> , 2019 , 1, 1714-1720	5.1	6
213	Fast-neutron irradiation effects on monolayer MoS2. Applied Physics Express, 2019, 12, 056001	2.4	3
212	A Study of MnO with Different Crystalline Forms for Pseudocapacitive Desalination. <i>ACS Applied Materials & Desalination (Materials & Desalination)</i> , 11, 13176-13184	9.5	77
211	Tunable Pseudocapacitive Behavior in Metal©rganic Framework-Derived TiO2@Porous Carbon Enabling High-Performance Membrane Capacitive Deionization. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1812-1822	6.1	32
210	Miniature Pneumatic Actuators for Soft Robots by High-Resolution Multimaterial 3D Printing. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900427	6.8	52
209	A MoS2MWCNT based fluorometric nanosensor for exosome detection and quantification. <i>Nanoscale Advances</i> , 2019 , 1, 2866-2872	5.1	20
208	Promoting Highly Reversible Sodium Storage of Iron Sulfide Hollow Polyhedrons via Cobalt Incorporation and Graphene Wrapping. <i>Advanced Energy Materials</i> , 2019 , 9, 1901584	21.8	46
207	In situ-grown compressed NiCo2S4 barrier layer for efficient and durable polysulfide entrapment. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	14
206	Graphene-Induced in Situ Growth of Monolayer and Bilayer 2D SiC Crystals Toward High-Temperature Electronics. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 39109-39115	9.5	7
205	In situ epitaxial engineering of graphene and h-BN lateral heterostructure with a tunable morphology comprising h-BN domains. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	22
204	Thermal-Assisted Vertical Electron Injections in Few-Layer Pyramidal-Structured MoS Crystals. Journal of Physical Chemistry Letters, 2019 , 10, 1292-1299	6.4	5
203	Bifunctional NiCo2S4 catalysts supported on a carbon textile interlayer for ultra-stable Liß battery. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7604-7613	13	60
202	Elucidating the reaction kinetics of lithiumBulfur batteries by operando XRD based on an open-hollow S@MnO2 cathode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6651-6658	13	28
201	Promoting polysulfide conversion by catalytic ternary Fe3O4/carbon/graphene composites with ordered microchannels for ultrahigh-rate lithiumBulfur batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25078-25087	13	43
200	Design Multifunctional Catalytic Interface: Toward Regulation of Polysulfide and Li S Redox Conversion in Li-S Batteries. <i>Small</i> , 2019 , 15, e1906132	11	35
199	3D printed electrodes for efficient membrane capacitive deionization. <i>Nanoscale Advances</i> , 2019 , 1, 48	04 5.4 81	114
198	Three-dimensional honeycomb carbon: Junction line distortion and novel emergent fermions. <i>Carbon</i> , 2019 , 141, 417-426	10.4	29
197	From Self-Assembly Hierarchical h-BN Patterns to Centimeter-Scale Uniform Monolayer h-BN Film. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801493	4.6	14

196	Determination of boron concentration in aqueous solutions based on conductivity measurement: a boron sensor based on conductivity measurement. <i>International Journal of Environmental Science and Technology</i> , 2019 , 16, 1711-1716	3.3	О
195	Three-dimensional graphene oxide and polyvinyl alcohol composites as structured activated carbons for capacitive desalination. <i>Desalination</i> , 2019 , 451, 172-181	10.3	43
194	Low energy consumption dual-ion electrochemical deionization system using NaTi2(PO4)3-AgNPs electrodes. <i>Desalination</i> , 2019 , 451, 241-247	10.3	63
193	Significant photoluminescence enhancement in WS monolayers through NaS treatment. <i>Nanoscale</i> , 2018 , 10, 6105-6112	7.7	21
192	A high performance electrochemical deionization method to desalinate brackish water with an FePO4/RGO nanocomposite. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8901-8908	13	42
191	Efficient Sodium Storage in Rolled-Up Amorphous Si Nanomembranes. <i>Advanced Materials</i> , 2018 , 30, e1706637	24	57
190	NaTi2(PO4)3-Ag electrodes based desalination battery and energy recovery. FlatChem, 2018, 8, 9-16	5.1	39
189	Ar plasma modification of 2D MXene Ti 3 C 2 T \times nanosheets for efficient capacitive desalination. <i>FlatChem</i> , 2018 , 8, 17-24	5.1	63
188	Rod-like nitrogen-doped carbon hollow shells for enhanced capacitive deionization. <i>FlatChem</i> , 2018 , 7, 10-17	5.1	15
187	3D hierarchical defect-rich NiMo3S4 nanosheet arrays grown on carbon textiles for high-performance sodium-ion batteries and hydrogen evolution reaction. <i>Nano Energy</i> , 2018 , 49, 460-4	76 ^{7.1}	78
186	Superior initial coulombic efficiency through graphene quantum dot decorated on MoS2. <i>FlatChem</i> , 2018 , 9, 8-14	5.1	7
185	Crystallization-Induced Morphological Tuning Toward Denim-like Graphene Nanosheets in a KCl-Copolymer Solution. <i>ACS Nano</i> , 2018 , 12, 4019-4024	16.7	19
184	3D-Printed, Carbon-Nanotube-Wrapped, Thermoresponsive Polymer Spheres for Safer Lithium-Ion Batteries. <i>Energy Technology</i> , 2018 , 6, 1715-1722	3.5	10
183	Hybrid nodal loop metal: Unconventional magnetoresponse and material realization. <i>Physical Review B</i> , 2018 , 97,	3.3	54
182	Sustainable Routes for the Synthesis of Renewable Heteroatom-Containing Chemicals. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5694-5707	8.3	104
181	Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction. <i>Energy Storage Materials</i> , 2018 , 15, 98-107	19.4	80
180	SnSe2 Quantum Dot/rGO composite as high performing lithium anode. <i>Energy Storage Materials</i> , 2018 , 10, 92-101	19.4	47
179	Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery. <i>Nano Energy</i> , 2018 , 51, 340-348	17.1	202

178	Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. <i>Advanced Materials</i> , 2018 , 30, e1800865	24	135
177	Universal Scaling Laws in Schottky Heterostructures Based on Two-Dimensional Materials. <i>Physical Review Letters</i> , 2018 , 121, 056802	7.4	8o
176	High-Performance Membrane Capacitive Deionization Based on Metal-Organic Framework-Derived Hierarchical Carbon Structures. <i>ACS Omega</i> , 2018 , 3, 8506-8513	3.9	26
175	Three-dimensional hierarchical NiCo2S4@MoS2 heterostructure arrays for high performance sodium ion battery. <i>FlatChem</i> , 2018 , 10, 14-21	5.1	10
174	3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10813-10824	13	82
173	Mechanism Investigation of High-Performance Li-Polysulfide Batteries Enabled by Tungsten Disulfide Nanopetals. <i>ACS Nano</i> , 2018 , 12, 9504-9512	16.7	61
172	Tailoring NiO Nanostructured Arrays by Sulfate Anions for Sodium-Ion Batteries. <i>Small</i> , 2018 , 14, e1800	81918	29
171	Free-Standing Electrodes Derived from Metal®rganic Frameworks/ Nanofibers Hybrids for Membrane Capacitive Deionization. <i>Advanced Materials Technologies</i> , 2018 , 3, 1800135	6.8	22
170	Ultrahigh-Desalination-Capacity Dual-Ion Electrochemical Deionization Device Based on NaV(PO)@C-AgCl Electrodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 40540-40548	9.5	53
169	Unlocking the potential of SnS: Transition metal catalyzed utilization of reversible conversion and alloying reactions. <i>Scientific Reports</i> , 2017 , 7, 41015	4.9	18
168	Modeling of a selective solar absorber thin film structure based on double TiNxOy layers for concentrated solar power applications. <i>Solar Energy</i> , 2017 , 142, 33-38	6.8	19
167	Bimetallic metalBrganic framework derived porous carbon nanostructures for high performance membrane capacitive desalination. <i>Journal of Materials Chemistry A,</i> 2017 , 5, 6113-6121	13	71
166	Concurrent Synthesis of High-Performance Monolayer Transition Metal Disulfides. <i>Advanced Functional Materials</i> , 2017 , 27, 1605896	15.6	31
165	An aqueous rechargeable chloride ion battery. <i>Energy Storage Materials</i> , 2017 , 7, 189-194	19.4	57
164	Nontopotactic Reaction in Highly Reversible Sodium Storage of Ultrathin Co Se /rGO Hybrid Nanosheets. <i>Small</i> , 2017 , 13, 1603980	11	34
163	Cubic-shaped WS2 nanopetals on a Prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10406-	1 0415	77
162	W/Cu thin film infrared reflector for TiNxOy based selective solar absorber with high thermal stability. <i>Journal of Applied Physics</i> , 2017 , 121, 203101	2.5	6
161	Boron detection and quantification based on the absorption spectra of pyridoxine and its boron complex. <i>Environmental Chemistry</i> , 2017 , 14, 135	3.2	1

160	A dual-ion electrochemistry deionization system based on AgCl-NaMnO electrodes. <i>Nanoscale</i> , 2017 , 9, 10101-10108	7.7	96
159	Fe3O4 quantum dot decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9122-9131	13	74
158	3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. <i>Nature Communications</i> , 2017 , 8, 13949	17.4	277
157	3D nitrogen-doped graphene decorated CoNi2S4@polypyrrole electrode for pseudocapacitor with ultrahigh electrochemical performance. <i>FlatChem</i> , 2017 , 6, 1-10	5.1	6
156	A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism. <i>Nanoscale</i> , 2017 , 9, 13305-13312	7.7	114
155	Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 18157-18165	13	76
154	Green Fabrication of Silkworm Cocoon-like Silicon-Based Composite for High-Performance Li-Ion Batteries. <i>ACS Nano</i> , 2017 , 11, 8628-8635	16.7	71
153	Vacuum level dependent photoluminescence in chemical vapor deposition-grown monolayer MoS. <i>Scientific Reports</i> , 2017 , 7, 16714	4.9	20
152	Electrical Homogeneity of Large-Area Chemical Vapor Deposited Multilayer Hexagonal Boron Nitride Sheets. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	15
151	Dual-ions electrochemical deionization: a desalination generator. <i>Energy and Environmental Science</i> , 2017 , 10, 2081-2089	35.4	176
150	A review on the research progress of tailoring photoluminescence of monolayer transition metal dichalcogenides. <i>FlatChem</i> , 2017 , 4, 48-53	5.1	14
149	Coexistence of four-band nodal rings and triply degenerate nodal points in centrosymmetric metal diborides. <i>Physical Review B</i> , 2017 , 95,	3.3	101
148	Highly-efficient MnO 2 /carbon array-type catalytic cathode enabling confined Li 2 O 2 growth for long-life Li D 2 batteries. <i>Energy Storage Materials</i> , 2017 , 6, 164-170	19.4	23
147	Nitrogen-doped graphene oxide for effectively removing boron ions from seawater. <i>Nanoscale</i> , 2017 , 9, 326-333	7.7	19
146	Theoretical prediction of MoN2 monolayer as a high capacity electrode material for metal ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15224-15231	13	154
145	Tracking Optical Welding through Groove Modes in Plasmonic Nanocavities. <i>Nano Letters</i> , 2016 , 16, 560)5-1.\$	36
144	Au-Decorated Cracked Carbon Tube Arrays as Binder-Free Catalytic Cathode Enabling Guided Li2O2 Inner Growth for High-Performance Li-O2 Batteries. <i>Advanced Functional Materials</i> , 2016 , 26, 7725-7732	215.6	40
143	Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale, 2016 , 8, 15340-7	7.7	272

(2015-2016)

142	Two dimensional layered Co0.85Se nanosheets as a high-capacity anode for lithium-ion batteries. <i>Nanoscale</i> , 2016 , 8, 14992-5000	7.7	70
141	WS2BD graphene nano-architecture networks for high performance anode materials of lithium ion batteries. <i>RSC Advances</i> , 2016 , 6, 107768-107775	3.7	24
140	Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores. <i>Scientific Reports</i> , 2016 , 6, 18966	4.9	93
139	High Pseudocapacitive Performance of MnO2 Nanowires on Recyclable Electrodes. <i>ChemSusChem</i> , 2016 , 9, 1020-6	8.3	11
138	MoS2-coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production. <i>NPG Asia Materials</i> , 2016 , 8, e268-e268	10.3	96
137	Seed-assisted growth of #Fe2O3 nanorod arrays on reduced graphene oxide: a superior anode for high-performance Li-ion and Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11800-11811	13	90
136	3D hierarchical Co3O4@Co3S4 nanoarrays as cathode materials for asymmetric pseudocapacitors. Journal of Materials Chemistry A, 2016 , 4, 3287-3296	13	122
135	Hydrothermally synthesized graphene and Fe3O4 nanocomposites for high performance capacitive deionization. <i>RSC Advances</i> , 2016 , 6, 11967-11972	3.7	42
134	A Microfluidic DNA Sensor Based on Three-Dimensional (3D) Hierarchical MoS///Carbon Nanotube Nanocomposites. <i>Sensors</i> , 2016 , 16,	3.8	17
133	Investigation of localized surface plasmon resonance of TiN nanoparticles in TiN_xO_y thin films. <i>Optical Materials Express</i> , 2016 , 6, 2422	2.6	17
132	Porous carbon hollow spheres synthesized via a modified StBer method for capacitive deionization. <i>RSC Advances</i> , 2016 , 6, 53542-53549	3.7	26
131	MoS 2 coated hollow carbon spheres for anodes of lithium ion batteries. 2D Materials, 2016, 3, 024001	5.9	33
130	Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors. <i>Nanoscale</i> , 2016 , 8, 10686-94	7.7	87
129	Design of a High Performance Selective Solar Absorber with the Structure of SiO2-TiO2-TiNxOy-Cu. <i>ECS Journal of Solid State Science and Technology</i> , 2016 , 5, N43-N47	2	9
128	Ice Templated Free-Standing Hierarchically WS2/CNT-rGO Aerogel for High-Performance Rechargeable Lithium and Sodium Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1601057	21.8	223
127	Three-dimensional Co3O4@C@Ni3S2 sandwich-structured nanoneedle arrays: towards high-performance flexible all-solid-state asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16150-16161	13	155
126	Au-nanocrystals-decorated EMnO2 as an efficient catalytic cathode for high-performance Li-O2 batteries. <i>Nanoscale</i> , 2015 , 7, 9589-96	7.7	31
125	Synthesis of self-assembled cobalt sulphide coated carbon nanotube and its superior electrochemical performance as anodes for Li-ion batteries. <i>Electrochimica Acta</i> , 2015 , 167, 388-395	6.7	52

124	Template-Free Synthesis of Three-Dimensional Nanoporous Bulk Graphitic Carbon Nitride with Remarkably Enhanced Photocatalytic Activity and Good Separation Properties. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 2611-2618	2.3	15
123	Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. <i>Scientific Reports</i> , 2015 , 5, 9164	4.9	100
122	DNA single-base mismatch study using graphene oxide nanosheets-based fluorometric biosensors. Analytical Chemistry, 2015 , 87, 9132-6	7.8	26
121	Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 21334-46	9.5	250
120	A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA. <i>Nanoscale</i> , 2015 , 7, 2245-9	7.7	88
119	MoS2 Surface Structure Tailoring via Carbonaceous Promoter. <i>Scientific Reports</i> , 2015 , 5, 10378	4.9	22
118	Free standing SnS 2 nanosheets on 3D graphene foam: an outstanding hybrid nanostructure anode for Li-ion batteries. <i>2D Materials</i> , 2015 , 2, 024010	5.9	31
117	Effects of Graphene Oxide Function Groups on SnO 2 / Graphene Nanocomposites for Lithium Storage Application. <i>Electrochimica Acta</i> , 2015 , 154, 338-344	6.7	33
116	Monitoring morphological changes in 2D monolayer semiconductors using atom-thick plasmonic nanocavities. <i>ACS Nano</i> , 2015 , 9, 825-30	16.7	86
115	Direct Growth of Flower-Like EMnO2 on Three-Dimensional Graphene for High-Performance Rechargeable Li-O2 Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1301960	21.8	139
114	Hydrogen-bonded supramolecular conjugated polymer nanoparticles for white light-emitting devices. <i>Macromolecular Rapid Communications</i> , 2014 , 35, 895-900	4.8	36
113	Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries. <i>Nanoscale</i> , 2014 , 6, 8884-90	7.7	81
112	Dual wavelength electroluminescence from CdSe/CdS tetrapods. ACS Nano, 2014, 8, 2873-9	16.7	49
111	Functionalized MoS(2) nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. <i>Small</i> , 2014 , 10, 1101-5	11	211
110	CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. <i>Nano Energy</i> , 2014 , 3, 46-54	17.1	162
109	Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes. <i>Nanoscale</i> , 2014 , 6, 15020-8	7.7	24
108	Wide-bandwidth lasing from C-dot/epoxy nanocomposite FabryPerot cavities with ultralow threshold. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1525	7.1	39
107	A high charge efficiency electrode by self-assembling sulphonated reduced graphene oxide onto carbon fibre: towards enhanced capacitive deionization. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3484	13	65

(2013-2014)

106	Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18125-18131	13	128
105	Preparation of MoS2MoO3 Hybrid Nanomaterials for Light-Emitting Diodes. <i>Angewandte Chemie</i> , 2014 , 126, 12768-12773	3.6	30
104	Larger Extended anti-/syn-aroylenediimidazole polyaromatic compounds: synthesis, physical properties, self-assembly, and quasi-linear conjugation effect. <i>RSC Advances</i> , 2014 , 4, 17822-17831	3.7	20
103	3D graphene supported MoO2 for high performance binder-free lithium ion battery. <i>Nanoscale</i> , 2014 , 6, 9839-45	7.7	74
102	Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12560-5	16.4	62
101	Phase Transformation Induced Capacitance Activation for 3D Graphene-CoO Nanorod Pseudocapacitor. <i>Advanced Energy Materials</i> , 2014 , 4, 1301788	21.8	75
100	Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices. <i>Nanotechnology</i> , 2014 , 25, 094010	3.4	81
99	Hybrid CuO/SnO2 nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials. <i>Applied Physics Letters</i> , 2014 , 105, 143905	3.4	47
98	Real-time, sensitive electrical detection of Cryptosporidium parvum oocysts based on chemical vapor deposition-grown graphene. <i>Applied Physics Letters</i> , 2014 , 104, 063705	3.4	3
97	Excitons in a mirror: Formation of Bptical bilayers I is in MoS2 monolayers on gold substrates. <i>Applied Physics Letters</i> , 2014 , 104, 191105	3.4	26
96	Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. <i>Nature Communications</i> , 2013 , 4, 2220	17.4	259
95	Large scale synthesized sulphonated reduced graphene oxide: a high performance material for electrochemical capacitors. <i>RSC Advances</i> , 2013 , 3, 14954	3.7	15
94	Core-leaf onion-like carbon/MnO2 hybrid nano-urchins for rechargeable lithium-ion batteries. <i>Carbon</i> , 2013 , 64, 230-236	10.4	84
93	Design and synthesis of NiO nanoflakes/graphene nanocomposite as high performance electrodes of pseudocapacitor. <i>RSC Advances</i> , 2013 , 3, 19409	3.7	49
92	Synthesis, physical properties, and self-assembly of a novel asymmetric aroyleneimidazophenazine. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 665-9	4.5	40
91	Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5212	13	68
90	Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. <i>Scientific Reports</i> , 2013 , 3, 1839	4.9	342
89	Self-assembly of hierarchical MoSx/CNT nanocomposites (2. <i>Scientific Reports</i> , 2013 , 3, 2169	4.9	267

88	Ink-jet printed In-Ga-Zn oxide nonvolatile TFT memory utilizing silicon nanocrystals embedded in SiO2 gate dielectric 2013 ,		1
87	Ultraviolet Lasing Characteristics of ZnS Microbelt Lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2013 , 19, 1501705-1501705	3.8	2
86	TixSn1🛮O3 solid solution as an anode material in lithium-ion batteries. <i>Electrochimica Acta</i> , 2012 , 72, 186-191	6.7	15
85	Size-suppressed dielectrics of Ge nanocrystals: skin-deep quantum entrapment. <i>Nanoscale</i> , 2012 , 4, 130	8 7 . 1/ 1	6
84	Wavelength tunable electroluminescence from randomly assembled n-CdS(x)Se(1-x) nanowires/p+-SiC heterojunction. <i>Nanoscale</i> , 2012 , 4, 1467-70	7.7	6
83	Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12369		145
82	A free-standing, self-assembly ternary membrane with high conductivity for lithium-ion batteries. <i>Solid State Ionics</i> , 2012 , 221, 28-34	3.3	21
81	Controlled electroluminescence of n-ZnMgO/p-GaN light-emitting diodes. <i>Applied Physics Letters</i> , 2012 , 101, 263506	3.4	12
80	MnO2/onion-like carbon nanocomposites for pseudocapacitors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17584		82
79	SWCNT networks on nanoporous silica catalyst support: morphological and connectivity control for nanoelectronic, gas-sensing, and biosensing devices. <i>ACS Nano</i> , 2012 , 6, 5809-19	16.7	28
78	van der Waals epitaxy of MoS[layers using graphene as growth templates. <i>Nano Letters</i> , 2012 , 12, 2784-	91 11.5	788
77	Single polymer-based ternary electronic memory material and device. Advanced Materials, 2012, 24, 290) 1 -zþ	161
76	Observation of lasing emission from carbon nanodots in organic solvents. <i>Advanced Materials</i> , 2012 , 24, 2263-7	24	132
75	Fabrication of magnetic cryptomelane-type manganese oxide nanowires for water treatment. <i>Chemical Communications</i> , 2011 , 47, 1890-2	5.8	60
74	Ultraviolet random lasing action from highly disordered n-AlN/p-GaN heterojunction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 1726-30	9.5	12
73	An Index-Guided ZnO Random Laser Array. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 522-524	2.2	4
72	Preparation, characterization, and photoswitching/light-emitting behaviors of coronene nanowires. Journal of Materials Chemistry, 2011 , 21, 1423-1427		104
71	Excellent BODIPY Dye Containing Dimesitylboryl Groups as PeT-Based Fluorescent Probes for Fluoride. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19947-19954	3.8	52

(2009-2011)

70	Shape-Controlled Micro/Nanostructures of 9,10-Diphenylanthracene (DPA) and Their Application in Light-Emitting Devices. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7924-7927	3.8	87
69	Synthesis, characterization, self-assembly, and physical properties of 11-methylbenzo[d]pyreno[4,5-b]furan. <i>Organic Letters</i> , 2011 , 13, 3004-7	6.2	87
68	Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3 distributed Bragg reflector [Ag interface. <i>Optics Communications</i> , 2011 , 284, 1890-1892	2	15
67	Broadband near ultraviolet random lasing in ZnO 3-D nanowalls. <i>Journal of Nanoscience and Nanotechnology</i> , 2011 , 11, 9326-32	1.3	4
66	ZnO random laser diode arrays for stable single-mode operation at high power. <i>Applied Physics Letters</i> , 2010 , 97, 241107	3.4	64
65	Directional and controllable edge-emitting ZnO ultraviolet random laser diodes. <i>Applied Physics Letters</i> , 2010 , 96, 101116	3.4	8o
64	Electroluminescence from AlN nanowires grown on p-SiC substrate. <i>Applied Physics Letters</i> , 2010 , 97, 191105	3.4	11
63	Wide bandwidth lasing randomly assembled ZnS/ZnO biaxial nanobelt heterostructures. <i>Applied Physics Letters</i> , 2010 , 96, 141115	3.4	10
62	Ultraviolet electroluminescence from randomly assembled n-SnO(2) nanowiresp-GaN:Mg heterojunction. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	36
61	Edge-emitting ultraviolet n-ZnO:Al/i-ZnO/p-GaN heterojunction light-emitting diode with a rib waveguide. <i>Optics Express</i> , 2010 , 18, 3687-92	3.3	10
60	Random lasing action of randomly assembled ZnO nanowires with MgO coating. <i>Optics Express</i> , 2010 , 18, 13647-54	3.3	24
59	Electroluminescence from n-In2O3:Sn randomly assembled nanorods/p-SiC heterojunction. <i>Optics Express</i> , 2010 , 18, 15585-90	3.3	11
58	Size control of Si nanocrystals by two-step rapid thermal annealing of sputtered Si-rich oxide/SiO2 superlattice. <i>Applied Physics A: Materials Science and Processing</i> , 2010 , 98, 867-871	2.6	6
57	Random Lasing Action from Randomly Assembled ZnS Nanosheets. <i>Nanoscale Research Letters</i> , 2010 , 5, 809-12	5	16
56	Hybridized Nanowires and Cubes: A Novel Architecture of a Heterojunctioned TiO2/SrTiO3 Thin Film for Efficient Water Splitting. <i>Advanced Functional Materials</i> , 2010 , 20, 4287-4294	15.6	246
55	Rapid Thermal Annealing of Sputtered Silicon-Rich Oxide/SiO[sub 2] Superlattice Structure. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, K29		11
54	High temperature excitonic lasing characteristics of randomly assembled SnO2 nanowires. <i>Applied Physics Letters</i> , 2009 , 95, 131106	3.4	16
53	High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide. <i>Journal of Applied Physics</i> , 2009 , 106, 043102	2.5	13

52	Randomly packed n-SnO2 nanorods/p-SiC heterojunction light-emitting diodes. <i>Applied Physics Letters</i> , 2009 , 95, 201104	3.4	27
51	High-temperature lasing characteristics of randomly assembled SnO2 backbone nanowires coated with ZnO nanofins. <i>Journal of Applied Physics</i> , 2009 , 106, 123105	2.5	12
50	Direct growth of ZnO nanocrystals onto the surface of porous TiO(2) nanotube arrays for highly efficient and recyclable photocatalysts. <i>Small</i> , 2009 , 5, 2260-4	11	98
49	Random laser action in 3-D ZnO nanostructures. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2009 , 6, S154-S157		1
48	Wide tunable ultraviolet random lasing action from ZnMgo thin films. <i>Journal of Crystal Growth</i> , 2009 , 312, 16-18	1.6	8
47	Ultraviolet coherent random lasing in randomly assembled SnO2 nanowires. <i>Applied Physics Letters</i> , 2009 , 94, 241121	3.4	43
46	Suppression of Random Lasing Modes in Polycrystalline ZnO Thin-Film by Using Distributed Bragg Reflector. <i>IEEE Photonics Technology Letters</i> , 2009 , 21, 549-551	2.2	2
45	ZnOIInMgO Multiple Quantum-Well Ridge Waveguide Lasers. <i>IEEE Photonics Technology Letters</i> , 2009 , 21, 1624-1626	2.2	3
44	Hierarchical assembly of ZnO nanostructures on SnO(2) backbone nanowires: low-temperature hydrothermal preparation and optical properties. <i>ACS Nano</i> , 2009 , 3, 3069-76	16.7	242
43	Synthesis and random laser application of ZnO nano-walls: a review. <i>International Journal of Nanotechnology</i> , 2009 , 6, 723	1.5	8
42	Ultraviolet Laser Action in Ferromagnetic Zn1-xFexO Nanoneedles. <i>Nanoscale Research Letters</i> , 2009 , 5, 247-51	5	12
41			
,	Synthesis, optical properties and functional applications of ZnO nano-materials: A review 2008,		3
40	Synthesis, optical properties and functional applications of ZnO nano-materials: A review 2008, Ferromagnetic Cu-doped AlN nanorods. <i>Nanotechnology</i> , 2007, 18, 105601	3.4	3 35
			35
40	Ferromagnetic Cu-doped AlN nanorods. <i>Nanotechnology</i> , 2007 , 18, 105601	0 - 2 % 63	35
40 39	Ferromagnetic Cu-doped AlN nanorods. <i>Nanotechnology</i> , 2007 , 18, 105601 Synthesis, morphology and random laser action of ZnO nanostructures. <i>Surface Science</i> , 2007 , 601, 2660	0 - 2 % 63	35
40 39 38	Ferromagnetic Cu-doped AlN nanorods. <i>Nanotechnology</i> , 2007 , 18, 105601 Synthesis, morphology and random laser action of ZnO nanostructures. <i>Surface Science</i> , 2007 , 601, 2660 Structural and optical properties of wurtzite InN grown on Si(111). <i>Thin Solid Films</i> , 2007 , 515, 4619-462 Low-temperature fabrication and random laser action of doped zinc oxide nanoneedles. <i>Surface</i>	0-2863 232.2	35 21 15

(2006-2007)

34	Reliable and flexible carbon-nanofiber-based all-plastic field emission devices. <i>Applied Physics Letters</i> , 2007 , 90, 143103	3.4	43
33	Exciton radiative lifetime in ZnO nanorods fabricated by vapor phase transport method. <i>Applied Physics Letters</i> , 2007 , 90, 013107	3.4	65
32	Ultraviolet photoluminescence from ferromagnetic Fe-doped AlN nanorods. <i>Applied Physics Letters</i> , 2007 , 90, 193118	3.4	35
31	Magnetic anisotropy in the ferromagnetic Cu-doped ZnO nanoneedles. <i>Applied Physics Letters</i> , 2007 , 90, 032509	3.4	87
30	Enhancement of ferromagnetism and stability in Cu-doped ZnO by N2O annealing. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 356214	1.8	15
29	Fabrication and Optical Properties of ZnO Quantum Dots. <i>Advanced Materials Research</i> , 2007 , 31, 71-73	0.5	
28	Temperature dependent exciton radiative lifetime in ZnO nanorods. <i>International Journal of Nanotechnology</i> , 2007 , 4, 404	1.5	
27	Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance. <i>Applied Physics Letters</i> , 2007 , 90, 231106	3.4	77
26	Room temperature deposition of p-type arsenic doped ZnO polycrystalline films by laser-assist filtered cathodic vacuum arc technique. <i>Journal of Applied Physics</i> , 2007 , 101, 094905	2.5	23
25	Room-temperature growth of carbon nanofibers on plastic substrates. Surface Science, 2006, 600, 3663	-3667	27
24	High-Temperature Lasing Characteristics of ZnO Epilayers. <i>Advanced Materials</i> , 2006 , 18, 771-774	24	37
23	High-temperature random lasing in ZnO nanoneedles. <i>Applied Physics Letters</i> , 2006 , 89, 011103	3.4	39
22	X-ray generation using carbon-nanofiber-based flexible field emitters. <i>Applied Physics Letters</i> , 2006 , 88, 103105	3.4	56
21	Exciton radiative lifetime in ZnO quantum dots embedded in SiOx matrix. <i>Applied Physics Letters</i> , 2006 , 88, 221903	3.4	27
20	?Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles. <i>Applied Physics Letters</i> , 2006 , 89, 081107	3.4	19
19	Room-Temperature Growth and Applications of Carbon Nanofibers: A Review. <i>IEEE Nanotechnology Magazine</i> , 2006 , 5, 587-594	2.6	19
18	Local measurement of secondary electron emission from ZnO-coated carbon nanotubes. <i>Nanotechnology</i> , 2006 , 17, 1564-7	3.4	24
17	Enhanced secondary electron emission from group III nitride/ZnO coaxial nanorod heterostructures. <i>Small</i> , 2006 , 2, 736-40	11	10

16	Formation conditions of random laser cavities in annealed ZnO epilayers. <i>IEEE Journal of Quantum Electronics</i> , 2005 , 41, 970-973	2	12
15	Laser action in ZnO nanoneedles selectively grown on silicon and plastic substrates. <i>Applied Physics Letters</i> , 2005 , 87, 013104	3.4	68
14	Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer. <i>Applied Physics Letters</i> , 2005 , 86, 031112	3.4	41
13	Field emission from zinc oxide nanoneedles on plastic substrates. <i>Nanotechnology</i> , 2005 , 16, 1300-1303	3.4	48
12	Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 7746-8	3.4	299
11	PAN B EO solid polymer electrolytes with high ionic conductivity. <i>Materials Chemistry and Physics</i> , 2005 , 89, 390-394	4.4	80
10	Flexible ultraviolet random lasers based on nanoparticles. <i>Small</i> , 2005 , 1, 956-9	11	41
9	Aligned InN nanofingers prepared by the ion-beam assisted filtered cathodic vacuum arc technique. <i>Nanotechnology</i> , 2005 , 16, 3069-3073	3.4	8
8	Strain dependence of lasing mechanisms in ZnO epilayers. <i>Applied Physics Letters</i> , 2005 , 86, 261111	3.4	36
7	An Exfoliation Evaporation Strategy To Regulate N Coordination Number of Co Single-Atom Catalysts for High-Performance Lithium Bulfur Batteries 1-10		3
6	Cubic Spinel XIn2S4 (X = Fe, Co, Mn): A New Type of Anode Material for Superfast and Ultrastable Na-Ion Storage. <i>Advanced Energy Materials</i> ,2102137	21.8	10
5	Hydrogel-elastomer-based stretchable strain sensor fabricated by a simple projection lithography method. <i>International Journal of Smart and Nano Materials</i> ,1-13	3.6	3
4	A Universal Additive Strategy to Reshape Electrolyte Solvation Structure toward Reversible Zn Storage. <i>Advanced Energy Materials</i> ,2103231	21.8	16
3	Multi-stage anisotropic etching of two-dimensional heterostructures. <i>Nano Research</i> ,1	10	2
2	Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO2 Reduction toward Valuable Products. <i>ACS Catalysis</i> ,4792-4805	5 ^{13.1}	3
1	Progress on 3D-Printed Metal-Organic Frameworks with Hierarchical Structures. <i>Advanced Materials Technologies</i> ,2200023	6.8	2