List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3469731/publications.pdf Version: 2024-02-01

		5126	11282
384	22,347	86	141
papers	citations	h-index	g-index
393	393	393	13983
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Involvement of a Formally Copper(III) Nitrite Complex in Proton-Coupled Electron Transfer and Nitration of Phenols. Inorganic Chemistry, 2022, 61, 2662-2668.	1.9	10
2	A Better Tomorrow. Inorganic Chemistry, 2022, 61, 1-2.	1.9	1
3	Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 2022, 122, 6322-6373.	23.0	99
4	Out in Inorganic Chemistry: A Celebration of LGBTQIAPN+ Inorganic Chemists. Inorganic Chemistry, 2022, 61, 5435-5441.	1.9	3
5	Stereocomplexation of Stereoregular Aliphatic Polyesters: Change from Amorphous to Semicrystalline Polymers with Single Stereocenter Inversion. Journal of the American Chemical Society, 2022, 144, 8362-8370.	6.6	18
6	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
7	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
8	A Year Like No Other. Inorganic Chemistry, 2021, 60, 1-3.	1.9	0
9	Structural Characterization of the [CuOR] ²⁺ Core. Journal of the American Chemical Society, 2021, 143, 3295-3299.	6.6	12
10	Sulfur-Containing Analogues of the Reactive [CuOH] ²⁺ Core. Inorganic Chemistry, 2021, 60, 5217-5223.	1.9	11
11	Structural Basis for the Different Mechanical Behaviors of Two Chemically Analogous, Carbohydrate-Derived Thermosets. ACS Macro Letters, 2021, 10, 609-615.	2.3	5
12	Regioregular Polymers from Biobased (<i>R</i>)-1,3-Butylene Carbonate. Macromolecules, 2021, 54, 5974-5984.	2.2	9
13	In Appreciation of Reviewers. Inorganic Chemistry, 2021, 60, 14489-14490.	1.9	0
14	Mr. Inorganic Chemistry: M. Frederick Hawthorne (August 24, 1928–July 8, 2021). Inorganic Chemistry, 2021, 60, 12621-12624.	1.9	1
15	Using a monocopper-superoxo complex to prepare multicopper-peroxo species relevant to proposed enzyme intermediates. Journal of Inorganic Biochemistry, 2021, 222, 111498.	1.5	1
16	Degradable polyanhydride networks derived from itaconic acid. Polymer Chemistry, 2021, 12, 608-617.	1.9	10
17	Ring opening polymerization of β-acetoxy-δ-methylvalerolactone, a triacetic acid lactone derivative. Polymer Chemistry, 2021, 12, 6724-6730.	1.9	5
18	60 Years of <i>Inorganic Chemistry</i> . Inorganic Chemistry, 2021, 60, 18561-18566.	1.9	0

#	Article	IF	CITATIONS
19	Youthful Exuberance. Inorganic Chemistry, 2020, 59, 1-3.	1.9	О
20	Next-generation polymers: Isosorbide as a renewable alternative. Progress in Polymer Science, 2020, 101, 101196.	11.8	140
21	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
22	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
23	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	Ο
24	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
25	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	Ο
26	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
28	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
32	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	Ο
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	0
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
38	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
40	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
41	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	Ο
42	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
43	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
44	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
45	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
46	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
47	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
48	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
49	Mechanistic insight into initiation and regioselectivity in the copolymerization of epoxides and anhydrides by Al complexes. Chemical Communications, 2020, 56, 14027-14030.	2.2	7
50	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
51	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
52	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
53	Appreciating Reviewers. Inorganic Chemistry, 2020, 59, 13803-13804.	1.9	0
54	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	2.5	0

#	Article	IF	CITATIONS
55	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	Ο
56	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
57	Inorganic Young Investigators: Celebrating the Rising Generation of Chemists. Inorganic Chemistry, 2020, 59, 11852-11854.	1.9	Ο
58	Ligand Effects on Decarbonylation of Palladium-Acyl Complexes. Organometallics, 2020, 39, 3992-3998.	1.1	2
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	Ο
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
61	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	Ο
62	A Safe Return. Inorganic Chemistry, 2020, 59, 6647-6647.	1.9	1
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	Ο
64	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
65	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
66	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
67	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
68	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	0
69	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
70	Block Copolymer Pressure-Sensitive Adhesives Derived from Fatty Acids and Triacetic Acid Lactone. ACS Applied Polymer Materials, 2020, 2, 2719-2728.	2.0	19
71	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	0
72	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	Ο
74	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	0
75	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
76	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	0
77	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
78	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	0
79	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
80	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
81	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0
82	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	0
83	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
84	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
85	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	4.0	13
86	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
87	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2
88	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
89	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
90	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0

6

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	Ο
92	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
93	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	Ο
94	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
95	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
96	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
97	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
98	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
99	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
100	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
101	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
102	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
103	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
104	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
105	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
106	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
107	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0
108	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	0

#	Article	IF	CITATIONS
109	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
110	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	2.5	0
112	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
113	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
114	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
120	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
126	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0

#	Article	IF	CITATIONS
127	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	0
128	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
129	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
130	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	0
131	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	Ο
132	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
133	The Art of Synthesis: From a (Social) Distance. Inorganic Chemistry, 2020, 59, 5791-5795.	1.9	3
134	Mechanism of Initiation Stereocontrol in Polymerization of <i>rac</i> -Lactide by Aluminum Complexes Supported by Indolide–Imine Ligands. Macromolecules, 2020, 53, 1809-1818.	2.2	13
135	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
136	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
137	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	Ο
138	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
139	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	Ο
140	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
141	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	Ο
142	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
143	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	Ο
144	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0

#	Article	IF	CITATIONS
145	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	Ο
146	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
147	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
148	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
149	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	4.6	Ο
150	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
151	What IS Inorganic Chemistry?. Inorganic Chemistry, 2019, 58, 9515-9516.	1.9	2
152	Inorganic Young Investigators: A Celebration for Our Rising Stars. Inorganic Chemistry, 2019, 58, 10607-10610.	1.9	0
153	Mechanisms for Hydrogen-Atom Abstraction by Mononuclear Copper(III) Cores: Hydrogen-Atom Transfer or Concerted Proton-Coupled Electron Transfer?. Journal of the American Chemical Society, 2019, 141, 17236-17244.	6.6	55
154	Degradable Thermoset Fibers from Carbohydrate-Derived Diols via Thiol–Ene Photopolymerization. ACS Applied Polymer Materials, 2019, 1, 2933-2942.	2.0	17
155	Carboxylate Structural Effects on the Properties and Proton-Coupled Electron Transfer Reactivity of [CuO ₂ CR] ²⁺ Cores. Inorganic Chemistry, 2019, 58, 15872-15879.	1.9	16
156	Low Reorganization Energy for Electron Self-Exchange by a Formally Copper(III,II) Redox Couple. Inorganic Chemistry, 2019, 58, 14151-14158.	1.9	18
157	Editorial for IC Global Enterprise Virtual Issue. Inorganic Chemistry, 2019, 58, 5367-5368.	1.9	0
158	Valenceâ€ŧo ore Xâ€ŧay Emission Spectroscopy as a Probe of Oâ^'O Bond Activation in Cu ₂ O ₂ Complexes. Angewandte Chemie - International Edition, 2019, 58, 9114-9119.	7.2	26
159	Revisiting the Synthesis and Nucleophilic Reactivity of an Anionic Copper Superoxide Complex. Inorganic Chemistry, 2019, 58, 4706-4711.	1.9	25
160	Mechanistic Dichotomy in Proton-Coupled Electron-Transfer Reactions of Phenols with a Copper Superoxide Complex. Journal of the American Chemical Society, 2019, 141, 5470-5480.	6.6	55
161	Valenceâ€ŧo ore Xâ€ray Emission Spectroscopy as a Probe of Oâ^'O Bond Activation in Cu ₂ O ₂ Complexes. Angewandte Chemie, 2019, 131, 9212-9217.	1.6	3
162	Computational Prediction and Experimental Verification of ε-Caprolactone Ring-Opening Polymerization Activity by an Aluminum Complex of an Indolide/Schiff-Base Ligand. ACS Catalysis, 2019, 9, 885-889.	5.5	20

#	Article	IF	CITATIONS
163	Keeping Those Resolutions. Inorganic Chemistry, 2019, 58, 1-3.	1.9	2
164	Copper complexes of multidentate carboxamide ligands. Inorganica Chimica Acta, 2019, 485, 131-139.	1.2	7
165	Sterically Induced Ligand Framework Distortion Effects on Catalytic Cyclic Ester Polymerizations. Inorganic Chemistry, 2018, 57, 3451-3457.	1.9	20
166	New Year's Resolutions. Inorganic Chemistry, 2018, 57, 1-3.	1.9	3
167	Isomerization of Linear to Hyperbranched Polymers: Two Isomeric Lactones Converge via Metastable Isostructural Polyesters to a Highly Branched Analogue. ACS Macro Letters, 2018, 7, 1144-1148.	2.3	8
168	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Journal of Organic Chemistry, 2018, 83, 9573-9579.	1.7	0
169	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Inorganic Chemistry, 2018, 57, 11299-11305.	1.9	1
170	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Organometallics, 2018, 37, 2825-2831.	1.1	1
171	Degradable and renewably-sourced poly(ester-thioethers) by photo-initiated thiol–ene polymerization. Polymer Chemistry, 2018, 9, 3272-3278.	1.9	26
172	Dual-catalytic decarbonylation of fatty acid methyl esters to form olefins. Chemical Communications, 2018, 54, 7669-7672.	2.2	12
173	Effects of Charged Ligand Substituents on the Properties of the Formally Copper(III)-Hydroxide ([CuOH] ²⁺) Unit. Inorganic Chemistry, 2018, 57, 9794-9806.	1.9	30
174	The Five Stages of Rejection. Inorganic Chemistry, 2018, 57, 4789-4790.	1.9	4
175	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Organic Letters, 2018, 20, 5075-5081.	2.4	0
176	Bracing copper for the catalytic oxidation of Câ \in "H bonds. Nature Catalysis, 2018, 1, 571-577.	16.1	131
177	Copper–Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Chemical Reviews, 2017, 117, 2059-2107.	23.0	505
178	Anhydride-Additive-Free Nickel-Catalyzed Deoxygenation of Carboxylic Acids to Olefins. Organometallics, 2017, 36, 506-509.	1.1	32
179	Structure/property relationships in copolymers comprising renewable isosorbide, glucarodilactone, and 2,5-bis(hydroxymethyl)furan subunits. Polymer Chemistry, 2017, 8, 3746-3754.	1.9	53
180	Determination of the Cu(III)–OH Bond Distance by Resonance Raman Spectroscopy Using a Normalized Version of Badger's Rule. Journal of the American Chemical Society, 2017, 139, 4477-4485.	6.6	50

#	Article	IF	CITATIONS
181	Why So Slow? Mechanistic Insights from Studies of a Poor Catalyst for Polymerization of ε-Caprolactone. Inorganic Chemistry, 2017, 56, 725-728.	1.9	20
182	Editorial: Inorganic Chemistry at 55. Inorganic Chemistry, 2017, 56, 102-105.	1.9	0
183	Mechanistic Insights into the Alternating Copolymerization of Epoxides and Cyclic Anhydrides Using a (Salph)AlCl and Iminium Salt Catalytic System. Journal of the American Chemical Society, 2017, 139, 15222-15231.	6.6	125
184	Formally Copper(III)–Alkylperoxo Complexes as Models of Possible Intermediates in Monooxygenase Enzymes. Journal of the American Chemical Society, 2017, 139, 10220-10223.	6.6	52
185	Selective Decarbonylation of Fatty Acid Esters to Linear α-Olefins. Organometallics, 2017, 36, 2956-2964.	1.1	29
186	Mechanism of the Polymerization of rac-Lactide by Fast Zinc Alkoxide Catalysts. Inorganic Chemistry, 2017, 56, 14366-14372.	1.9	37
187	Reactivity of the copper(<scp>iii</scp>)-hydroxide unit with phenols. Chemical Science, 2017, 8, 1075-1085.	3.7	60
188	Nickel Catalysts for the Dehydrative Decarbonylation of Carboxylic Acids to Alkenes. Organometallics, 2016, 35, 2391-2400.	1.1	47
189	Upcoming Changes for <i>Inorganic Chemistry</i> : Adding Titles to References and Adjusting Communication Length Requirements. Inorganic Chemistry, 2016, 55, 6351-6351.	1.9	0
190	Mechanistic Studies of $\hat{l}\mu$ -Caprolactone Polymerization by (salen)AlOR Complexes and a Predictive Model for Cyclic Ester Polymerizations. ACS Catalysis, 2016, 6, 1215-1224.	5.5	55
191	The Year 2015 in <i>Inorganic Chemistry</i> . Inorganic Chemistry, 2016, 55, 1-3.	1.9	3
192	Perturbing the Copper(III)–Hydroxide Unit through Ligand Structural Variation. Journal of the American Chemical Society, 2016, 138, 356-368.	6.6	100
193	Secondary Sphere Hydrogen Bonding in Monocopper Complexes of Potentially Dinucleating Bis(carboxamide) Ligands. European Journal of Inorganic Chemistry, 2015, 2015, 5856-5863.	1.0	8
194	Forums on Small-Molecule Activation: from Biological Principles to Energy Applications. Inorganic Chemistry, 2015, 54, 5039-5039.	1.9	20
195	Sustainable Polyesters Derived from Glucose and Castor Oil: Building Block Structure Impacts Properties. ACS Macro Letters, 2015, 4, 284-288.	2.3	69
196	@InorgChem. Inorganic Chemistry, 2015, 54, 1-3.	1.9	8
197	Hydrogen Atom Abstraction from Hydrocarbons by a Copper(III)-Hydroxide Complex. Journal of the American Chemical Society, 2015, 137, 1322-1329.	6.6	149
198	Olefins from biomass feedstocks: catalytic ester decarbonylation and tandem Heck-type coupling. Chemical Communications, 2015, 51, 2731-2733.	2.2	35

#	Article	IF	CITATIONS
199	Pushing the Limits of Delta Bonding in Metal–Chromium Complexes with Redox Changes and Metal Swapping. Inorganic Chemistry, 2015, 54, 7579-7592.	1.9	46
200	[CuO] ⁺ and [CuOH] ²⁺ Complexes: Intermediates in Oxidation Catalysis?. Accounts of Chemical Research, 2015, 48, 2126-2131.	7.6	97
201	High-Performance Pressure-Sensitive Adhesives from Renewable Triblock Copolymers. Biomacromolecules, 2015, 16, 2537-2539.	2.6	42
202	Hydroxo-Bridged Dicopper(II,III) and -(III,III) Complexes: Models for Putative Intermediates in Oxidation Catalysis. Journal of the American Chemical Society, 2014, 136, 7269-7272.	6.6	63
203	Aliphatic Polyester Block Polymers: Renewable, Degradable, and Sustainable. Accounts of Chemical Research, 2014, 47, 2390-2396.	7.6	496
204	Linkage Isomerism in Transition-Metal Complexes of Mixed (Arylcarboxamido)(arylimino)pyridine Ligands. Inorganic Chemistry, 2014, 53, 5788-5796.	1.9	8
205	Reflections on Year One. Inorganic Chemistry, 2014, 53, 1-2.	1.9	15
206	Reactivity of (Dicarboxamide)M ^{II} –OH (M = Cu, Ni) Complexes – Reaction with Acetonitrile to Yield M ^{II} –Cyanomethides. European Journal of Inorganic Chemistry, 2013, 2013, 4077-4084.	1.0	48
207	Student Involvement in Improving the Culture of Safety in Academic Laboratories. Journal of Chemical Education, 2013, 90, 1414-1417.	1.1	51
208	Renewable carvone-based polyols for use in polyurethane thermosets. RSC Advances, 2013, 3, 20399.	1.7	18
209	Copper-, Palladium-, and Platinum-Containing Complexes of an Asymmetric Dinucleating Ligand. Inorganic Chemistry, 2013, 52, 793-799.	1.9	20
210	Editorial for the Virtual Issue on Models of Metalloenzymes. Inorganic Chemistry, 2013, 52, 7307-7310.	1.9	8
211	Isolation of a 2-Hydroxytetrahydrofuran Complex from Copper-Promoted Hydroxylation of THF. Inorganic Chemistry, 2013, 52, 8306-8308.	1.9	28
212	Understanding the Mechanism of Polymerization of Îμ-Caprolactone Catalyzed by Aluminum Salen Complexes. Inorganic Chemistry, 2013, 52, 13692-13701.	1.9	76
213	Catalytic decarbonylation of biomass-derived carboxylic acids as efficient route to commodity monomers. Green Chemistry, 2012, 14, 490.	4.6	59
214	Cu(I)/O2 Chemistry Using a β-Diketiminate Supporting Ligand Derived from N,N-Dimethylhydrazine: A [Cu3O2]3+ Complex with Novel Reactivity. Inorganic Chemistry, 2012, 51, 1881-1888.	1.9	31
215	Thermoplastic Elastomers Derived from Menthide and Tulipalin A. Biomacromolecules, 2012, 13, 3833-3840.	2.6	122
216	Preparation and Properties of a Monomeric High-Spin Mn ^V –Oxo Complex. Journal of the American Chemical Society, 2012, 134, 1996-1999.	6.6	115

#	Article	IF	CITATIONS
217	Polyurethanes based on renewable polyols from bioderived lactones. Polymer Chemistry, 2012, 3, 2941.	1.9	41
218	Roles of Monomer Binding and Alkoxide Nucleophilicity in Aluminum-Catalyzed Polymerization of ε - Caprolactone. Macromolecules, 2012, 45, 5387-5396.	2.2	73
219	Type 1 copper site synthetic model complexes with increased redox potentials. Journal of Biological Inorganic Chemistry, 2012, 17, 285-291.	1.1	8
220	Reactions of Ph ₃ Sbâ•6 with Copper(I) Complexes Supported by N-Donor Ligands: Formation of Stable Adducts and S-Transfer Reactivity. Inorganic Chemistry, 2011, 50, 2606-2612.	1.9	17
221	Functional biorenewable polyesters from carvone-derived lactones. Polymer Chemistry, 2011, 2, 702-708.	1.9	100
222	Pressure-Sensitive Adhesives from Renewable Triblock Copolymers. Macromolecules, 2011, 44, 87-94.	2.2	126
223	X-ray Absorption Spectroscopic and Computational Investigation of a Possible S···S Interaction in the [Cu ₃ S ₂] ³⁺ Core. Journal of the American Chemical Society, 2011, 133, 17180-17191.	6.6	29
224	Rapid C–H Bond Activation by a Monocopper(III)–Hydroxide Complex. Journal of the American Chemical Society, 2011, 133, 17602-17605.	6.6	191
225	Binding and Activation of N ₂ O at Transitionâ€Metal Centers: Recent Mechanistic Insights. Angewandte Chemie - International Edition, 2010, 49, 1018-1024.	7.2	218
226	Copper/α-Ketocarboxylate Chemistry With Supporting Peralkylated Diamines: Reactivity of Copper(I) Complexes and Dicopperâ^'Oxygen Intermediates. Inorganic Chemistry, 2010, 49, 3531-3539.	1.9	15
227	Preface: Forum on Dioxygen Activation and Reduction. Inorganic Chemistry, 2010, 49, 3555-3556.	1.9	25
228	Mechanistic Study of the Stereoselective Polymerization ofd,l-Lactide Using Indium(III) Halides. Journal of the American Chemical Society, 2010, 132, 11649-11657.	6.6	140
229	An Anionic, Tetragonal Copper(II) Superoxide Complex. Journal of the American Chemical Society, 2010, 132, 15869-15871.	6.6	100
230	Oxidized Dihydrocarvone as a Renewable Multifunctional Monomer for the Synthesis of Shape Memory Polyesters. Biomacromolecules, 2009, 10, 2003-2008.	2.6	69
231	Generating Cu ^{II} –Oxyl/Cu ^{III} –Oxo Species from Cu ^I –αâ€Ketocarboxylate Complexes and O ₂ : In Silico Studies on Ligand Effects and CHâ€Activation Reactivity. Chemistry - A European Journal, 2009, 15, 4886-4895.	1.7	70
232	Hydrolytic Degradation Behavior of a Renewable Thermoplastic Elastomer. Biomacromolecules, 2009, 10, 443-448.	2.6	57
233	Intermediates in Reactions of Copper(I) Complexes with <i>N</i> -Oxides: From the Formation of Stable Adducts to Oxo Transfer. Inorganic Chemistry, 2009, 48, 6323-6325.	1.9	48
234	Reduction of Nitrous Oxide to Dinitrogen by a Mixed Valent Tricopper-Disulfido Cluster. Journal of the American Chemical Society, 2009, 131, 2812-2814.	6.6	77

#	Article	IF	CITATIONS
235	Effects of Electron-Deficient β-Diketiminate and Formazan Supporting Ligands on Copper(I)-Mediated Dioxygen Activation. Inorganic Chemistry, 2009, 48, 4514-4523.	1.9	69
236	Consequences of Polylactide Stereochemistry on the Properties of Polylactide-Polymenthide-Polylactide Thermoplastic Elastomers. Biomacromolecules, 2009, 10, 2904-2911.	2.6	101
237	Stereoselective and controlled polymerization of d,l-lactide using indium(iii) trichloride. Chemical Communications, 2009, , 2736.	2.2	111
238	Poly(<scp>D</scp> â€lactide)–Poly(menthide)–Poly(<scp>D</scp> â€lactide) Triblock Copolymers as Crystal Nucleating Agents for Poly(<scp>L</scp> â€lactide). Macromolecular Symposia, 2009, 283–284, 130-138.	0.4	21
239	Novel Reactivity of Sideâ€On (Disulfido)dicopper Complexes Supported by Bi―and Tridentate Nitrogen Donors: Impact of Axial Coordination. Angewandte Chemie - International Edition, 2008, 47, 533-536.	7.2	24
240	Copper–sulfur complexes supported by N-donor ligands: Towards models of the CuZ site in nitrous oxide reductase. Inorganica Chimica Acta, 2008, 361, 885-893.	1.2	42
241	Biologically inspired oxidation catalysis. Nature, 2008, 455, 333-340.	13.7	1,259
242	Synthesis and reactivity of copper(<scp>i</scp>) complexes with an ethylene-bridged bis(imidazolin-2-imine) ligand. Dalton Transactions, 2008, , 887-894.	1.6	90
243	X-Ray Absorption Spectroscopic and Theoretical Studies on (L) ₂ [Cu ₂ (S ₂) <i>_n</i>] ²⁺ Complexes: Disulfide versus Disulfide(•1â^') Bonding. Journal of the American Chemical Society, 2008, 130, 676-686.	6.6	45
244	Iron(II) Complexes of Sterically Bulky α-Ketocarboxylates. Structural Models for α-Ketoacid-Dependent Nonheme Iron Halogenases. Inorganic Chemistry, 2008, 47, 1324-1331.	1.9	22
245	C2 -Symmetric 1,4-Diisopropyl-7-R -1,4,7-Triazacyclononanes. Inorganic Syntheses, 2007, , 75-81.	0.3	13
246	Coordination Chemistry with Sterically Hindered Hydrotris(pyrazolyl)borate Ligands: Organometallic and Bioinorganic Perspectives. Progress in Inorganic Chemistry, 2007, , 419-531.	3.0	188
247	Renewable-Resource Thermoplastic Elastomers Based on Polylactide and Polymenthide. Biomacromolecules, 2007, 8, 3634-3640.	2.6	162
248	Ligand Structural Effects on Cu2S2Bonding and Reactivity in Side-On Disulfido-Bridged Dicopper Complexes. Inorganic Chemistry, 2007, 46, 486-496.	1.9	61
249	Copper(I)â^îα-Ketocarboxylate Complexes:  Characterization and O ₂ Reactions That Yield Copperâ^Oxygen Intermediates Capable of Hydroxylating Arenes. Journal of the American Chemical Society, 2007, 129, 14190-14192.	6.6	93
250	Mononuclear Cu–O2 Complexes: Geometries, Spectroscopic Properties, Electronic Structures, and Reactivity. Accounts of Chemical Research, 2007, 40, 601-608.	7.6	337
251	Structural Diversity in Copperâ~'Sulfur Chemistry:Â Synthesis of Novel Cu/S Clusters through Metathesis Reactions. Inorganic Chemistry, 2007, 46, 8105-8107.	1.9	40
252	Heterobimetallic Dioxygen Activation: Synthesis and Reactivity of Mixed Cuâ^'Pd and Cuâ^'Pt Bis(μ-oxo) Complexes. Journal of the American Chemical Society, 2007, 129, 7990-7999.	6.6	60

#	Article	IF	CITATIONS
253	Structural and Mechanistic Studies of Bis(phenolato)amine Zinc(II) Catalysts for the Polymerization of Îμ-Caprolactone. Inorganic Chemistry, 2007, 46, 6565-6574.	1.9	114
254	Poly(1-Pyrazolyl)Alkane Ligands. Inorganic Syntheses, 2007, , 51-63.	0.3	19
255	Self-Assembly of the 2-His-1-carboxylate Facial Triad in Mononuclear Iron(II) and Zinc(II) Models of Metalloenzyme Active Sites. Inorganic Chemistry, 2006, 45, 8003-8005.	1.9	28
256	X-ray Absorption Edge Spectroscopy and Computational Studies on LCuO2 Species:  Superoxideâ^'Cull versus Peroxideâ^'Culll Bonding. Journal of the American Chemical Society, 2006, 128, 8286-8296.	6.6	148
257	Effects of Thioether Substituents on the O2Reactivity of β-Diketiminateâ^'Cu(l) Complexes: Probing the Role of the Methionine Ligand in Copper Monooxygenases. Journal of the American Chemical Society, 2006, 128, 3445-3458.	6.6	111
258	Heterobimetallic Activation of Dioxygen:Â Characterization and Reactivity of Novel Cu(I)â^'Ge(II) Complexes. Inorganic Chemistry, 2006, 45, 4191-4198.	1.9	88
259	Mononitrosyl Iron Complexes Supported by Sterically Hindered Carboxylate Ligands. Inorganic Chemistry, 2006, 45, 8006-8008.	1.9	16
260	Electronic tuning of β-diketiminate ligands with fluorinated substituents: effects on the O2-reactivity of mononuclear Cu(i) complexes. Dalton Transactions, 2006, , 4944-4953.	1.6	48
261	Models for dioxygen activation by the CuB site of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase. Journal of Biological Inorganic Chemistry, 2006, 11, 197-205.	1.1	44
262	Using synthetic chemistry to understand copper protein active sites: a personal perspective. Journal of Biological Inorganic Chemistry, 2006, 11, 261-271.	1.1	70
263	Characterization of the structure and reactivity of monocopper-oxygen complexes supported by β-diketiminate and anilido-imine ligands. Journal of Computational Chemistry, 2006, 27, 1950-1961.	1.5	54
264	Carbon Dioxide Reduction and Uses as a Chemical Feedstock. , 2006, , 1-41.		23
265	Nitrogen Monoxide and Nitrous Oxide Binding and Reduction. , 2006, , 43-79.		24
266	Bio-organometallic Approaches to Nitrogen Fixation Chemistry. , 2006, , 81-119.		53
267	The Activation of Dihydrogen. , 2006, , 121-158.		17
268	Molecular Oxygen Binding and Activation: Oxidation Catalysis. , 2006, , 159-186.		11
269	Dioxygen Binding and Activation: Reactive Intermediates. , 2006, , 187-234.		20
270	Methane Functionalization. , 2006, , 235-285.		24

#	Article	IF	CITATIONS
271	Water Activation: Catalytic Hydrolysis. , 2006, , 287-317.		6
272	Carbon Monoxide as a Chemical Feedstock: Carbonylation Catalysis. , 2006, , 319-356.		11
273	Zinc N-heterocyclic carbene complexes and their polymerization of d,l-lactide. Journal of Organometallic Chemistry, 2005, 690, 5881-5891.	0.8	129
274	Characterization of a Complex Comprising a {Cu2(S2)2}2+ Core: Bis(μ-S22â^')dicopper(III) or Bis(μ-S2.â^')dicopper(II)?. Angewandte Chemie - International Edition, 2005, 44, 7745-7748.	7.2	57
275	[Cu3(μ-S)2]3+Clusters Supported by N-Donor Ligands: Progress Toward a Synthetic Model of the Catalytic Site of Nitrous Oxide Reductase. Journal of the American Chemical Society, 2005, 127, 13752-13753.	6.6	79
276	Reactivity of a 1â^¶1 copper–oxygen complex: isolation of a Cu(ii)-o-iminosemiquinonato species. Chemical Communications, 2005, , 2014-2016.	2.2	41
277	Catalytic Polymerization of a Cyclic Ester Derived from a "Cool―Natural Precursor. Biomacromolecules, 2005, 6, 2091-2095.	2.6	96
278	Characterization of a 1:1 Cuâ^'O2Adduct Supported by an Anilido Imine Ligand. Inorganic Chemistry, 2005, 44, 6989-6997.	1.9	90
279	BIOPHYSICS: Catching Copper in the Act. Science, 2004, 304, 836-837.	6.0	20
280	Reactivity of Dioxygenâ^'Copper Systems. Chemical Reviews, 2004, 104, 1047-1076.	23.0	1,217
281	Mixed metal bis(μ-oxo) complexes with [CuM(μ-O)2]n+(M = Ni(iii) or Pd(ii)) cores. Chemical Communications, 2004, , 1716-1717.	2.2	41
282	Isotactic Polymers with Alternating Lactic Acid and Oxetane Subunits from the Endoentropic Polymerization of a 14-Membered Ring. Macromolecules, 2004, 37, 5274-5281.	2.2	24
283	A New Synthetic Route to Poly[3-hydroxypropionic acid] (P[3-HP]):Â Ring-Opening Polymerization of 3-HP Macrocyclic Esters. Macromolecules, 2004, 37, 8198-8200.	2.2	55
284	Mechanistic Studies on the Formation and Reactivity of Dioxygen Adducts of Diiron Complexes Supported by Sterically Hindered Carboxylates. Inorganic Chemistry, 2004, 43, 2141-2150.	1.9	36
285	A New Class of (μ-η2:η2-Disulfido)dicopper Complexes: Synthesis, Characterization, and Disulfido Exchange. Inorganic Chemistry, 2004, 43, 3335-3337.	1.9	64
286	Stereoelective polymerization of d,l-lactide using N-heterocyclic carbene based compounds. Chemical Communications, 2004, , 2504.	2.2	153
287	Dioxygen Activation at a Single Copper Site:Â Structure, Bonding, and Mechanism of Formation of 1:1 Cuâ~'O2Adducts. Journal of the American Chemical Society, 2004, 126, 16896-16911.	6.6	184
288	A Highly Active Zinc Catalyst for the Controlled Polymerization of Lactide. Journal of the American Chemical Society, 2003, 125, 11350-11359.	6.6	579

#	Article	IF	CITATIONS
289	Electronic influence of ligand substituents on the rate of polymerization of ε-caprolactone by single-site aluminium alkoxide catalysts. Dalton Transactions, 2003, , 3082-3087.	1.6	155
290	Copper(I)-phenolate complexes as models of the reduced active site of galactose oxidase: synthesis, characterization, and O2 reactivity. Journal of Biological Inorganic Chemistry, 2003, 8, 381-393.	1.1	53
291	Dicopper(i,i) and delocalized mixed-valent dicopper(i,ii) complexes of a sterically hindered carboxylate ligand. Dalton Transactions, 2003, , 1790-1794.	1.6	30
292	Variable character of OO and MO bonding in side-on (Â2) 1:1 metal complexes of O2. Proceedings of the United States of America, 2003, 100, 3635-3640.	3.3	315
293	Copper Chemistry of β-Diketiminate Ligands: Monomer/Dimer Equilibria and a New Class of Bis(μ-oxo)dicopper Compounds. Inorganic Chemistry, 2002, 41, 6307-6321.	1.9	127
294	β-Diketiminate Ligand Backbone Structural Effects on Cu(I)/O2Reactivity: Unique Copperâ^'Superoxo and Bis(μ-oxo) Complexes. Journal of the American Chemical Society, 2002, 124, 2108-2109.	6.6	185
295	The Electronic Properties of a Model Active Site for Blue Copper Proteins as Probed by Stark Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 3007-3012.	1.2	15
296	Calix[4]arenes Linked to Multiple Bidentate N-Donors:  Potential Ligands for Synthetic Modeling of Multinuclear Metalloenzymes. Organic Letters, 2002, 4, 1391-1393.	2.4	20
297	Mechanistic Comparison of Cyclic Ester Polymerizations by Novel Iron(III)â~'Alkoxide Complexes:Â Single vs Multiple Site Catalysis. Journal of the American Chemical Society, 2002, 124, 4384-4393.	6.6	280
298	Snapshots of Dioxygen Activation by Copper:  The Structure of a 1:1 Cu/O2 Adduct and Its Use in Syntheses of Asymmetric Bis(μ-oxo) Complexes. Journal of the American Chemical Society, 2002, 124, 10660-10661.	6.6	181
299	Polymerization of Lactide by Monomeric Sn(II) Alkoxide Complexes. Macromolecules, 2002, 35, 644-650.	2.2	136
300	Toward Synthetic Analogues of Linked Redox and Catalytic Multimetal Sites in Proteins:  A Model of the Histidineâ^'Cysteine Bridged Dicopper Array. Inorganic Chemistry, 2002, 41, 5656-5658.	1.9	20
301	Sterically hindered benzoates: a synthetic strategy for modeling dioxygen activation at diiron active sites in proteinsBased on the presentation given at Dalton Discussion No. 4, 10–13th January 2002, Kloster Banz, Germany Dalton Transactions RSC, 2002, , 653-660.	2.3	42
302	Cover Picture: Angew. Chem. Int. Ed. 7/2002. Angewandte Chemie - International Edition, 2002, 41, 1079-1079.	7.2	1
303	Bis(μ-oxo)dimetal "Diamond―Cores in Copper and Iron Complexes Relevant to Biocatalysis. Angewandte Chemie - International Edition, 2002, 41, 1114-1137.	7.2	397
304	Three-Coordinate Copper(II)â^'Phenolate Complexes. Inorganic Chemistry, 2001, 40, 6097-6107.	1.9	124
305	Copper(I) Chemistry of Bis(pyrazolyl)diphenylborate Ligands:Â Formation of a Heterocycle by Cu-Mediated Acetonitrile Addition. Inorganic Chemistry, 2001, 40, 165-168.	1.9	23
306	A Quantitative Description of the Ground-State Wave Function of CuAby X-ray Absorption Spectroscopy:Â Comparison to Plastocyanin and Relevance to Electron Transfer. Journal of the American Chemical Society, 2001, 123, 5757-5767.	6.6	153

#	Article	IF	CITATIONS
307	Metal ion complexation by a new, highly sterically hindered, bowl-shaped carboxylate ligand. Chemical Communications, 2001, , 111-112.	2.2	11
308	Rapid and Controlled Polymerization of Lactide by Structurally Characterized Ferric Alkoxides. Journal of the American Chemical Society, 2001, 123, 339-340.	6.6	198
309	Perfectly Alternating Copolymer of Lactic Acid and Ethylene Oxide as a Plasticizing Agent for Polylactide. Macromolecules, 2001, 34, 8641-8648.	2.2	94
310	New advances in ligand design for synthetic modeling of metalloprotein active sites. Current Opinion in Chemical Biology, 2001, 5, 188-195.	2.8	28
311	Lactide polymerization activity of alkoxide, phenoxide, and amide derivatives of yttrium(III) arylamidinates. Journal of Polymer Science Part A, 2001, 39, 284-293.	2.5	116
312	Polymerization of lactide and related cyclic esters by discrete metal complexes. Dalton Transactions RSC, 2001, , 2215-2224.	2.3	787
313	Aliphatic Hydroxylation by a Bis(μ-oxo)dicopper(III) Complex. Angewandte Chemie - International Edition, 2000, 39, 398-400.	7.2	147
314	Understanding the copper–phenoxyl radical array in galactose oxidase: contributions from synthetic modeling studies. Coordination Chemistry Reviews, 2000, 200-202, 633-685.	9.5	285
315	Heterocyclic donor influences on the binding and activation of CO, NO, and O2 by copper complexes of hybrid triazacyclononane–pyridyl ligands. Inorganica Chimica Acta, 2000, 297, 115-128.	1.2	22
316	A Novel Copper-Mediated DNA Base Pair. Journal of the American Chemical Society, 2000, 122, 10714-10715.	6.6	338
317	A Structural Model of the Type 1 Copper Protein Active Site:Â N2S(thiolate)S(thioether) Ligation in a Cu(II) Complex. Journal of the American Chemical Society, 2000, 122, 6331-6332.	6.6	135
318	Spectroscopic and Electronic Structural Studies of Blue Copper Model Complexes. 2. Comparison of Three- and Four-Coordinate Cu(II)â^ Thiolate Complexes and Fungal Laccase. Journal of the American Chemical Society, 2000, 122, 11632-11648.	6.6	116
319	Controlled Polymerization ofdl-Lactide and ε-Caprolactone by Structurally Well-Defined Alkoxo-Bridged Di- and Triyttrium(III) Complexes. Macromolecules, 2000, 33, 3970-3977.	2.2	129
320	N-Donor Effects on Carboxylate Binding in Mononuclear Iron(II) Complexes of a Sterically Hindered Benzoate Ligand. Inorganic Chemistry, 2000, 39, 6086-6090.	1.9	51
321	Ligand Macrocycle Structural Effects on Copperâ^'Dioxygen Reactivity. Inorganic Chemistry, 2000, 39, 4059-4072.	1.9	116
322	Resonance Raman Spectroscopy as a Probe of the Bis(μ-oxo)dicopper Core. Journal of the American Chemical Society, 2000, 122, 792-802.	6.6	91
323	Reactivity of Peroxo- and Bis(μ-oxo)dicopper Complexes with Catechols. Angewandte Chemie - International Edition, 1999, 38, 207-210.	7.2	64
324	Is the Bis(-oxo)dicopper Core Capable of Hydroxylating an Arene?. Angewandte Chemie - International Edition, 1999, 38, 1139-1142.	7.2	166

#	Article	IF	CITATIONS
325	Three-Coordinate Cu(II) Complexes:  Structural Models of Trigonal-Planar Type 1 Copper Protein Active Sites. Journal of the American Chemical Society, 1999, 121, 7270-7271.	6.6	187
326	Conformational Tuning of Valence Delocalization in Carboxylate-Rich Diiron Complexes. Journal of the American Chemical Society, 1999, 121, 9760-9761.	6.6	56
327	Discrete Yttrium(III) Complexes as Lactide Polymerization Catalysts. Macromolecules, 1999, 32, 2400-2402.	2.2	137
328	Experimental Studies of the Interconversion of μ-η2:η2-Peroxo- and Bis(μ-oxo)dicopper Complexes. Inorganic Chemistry, 1999, 38, 2161-2168.	1.9	92
329	Mono- versus bidentate coordination of the NONOate [Et2N(N2O2)]- to copper(II) complexes of tetradentate ligands. New Journal of Chemistry, 1998, 22, 459-466.	1.4	15
330	Synthesis and Copper Coordination Chemistry of Hindered 1,4,7-Triazacyclononane Ligands with Amide Appendages. Inorganic Chemistry, 1998, 37, 1091-1098.	1.9	28
331	An Unusual Ligand Oxidation by a (μ-η2:η2-Peroxo)dicopper Compound: 1° > 3° Câ~H Bond Selectivity and a Novel Bis(μ-alkylperoxo)dicopper Intermediate. Inorganic Chemistry, 1998, 37, 2102-2103.	1.9	35
332	Spectroscopy of Mixed-Valence CuA-Type Centers:Â Ligand-Field Control of Ground-State Properties Related to Electron Transfer. Journal of the American Chemical Society, 1998, 120, 5246-5263.	6.6	192
333	A New Set of Structurally Related Enantiopure Polypyrazolyl Ligands of Varying Rotational Symmetry:Â Synthesis, Metal Complexation, and Comparison of Asymmetric Induction. Organometallics, 1998, 17, 1984-1992.	1.1	48
334	A Bulky Benzoate Ligand for Modeling the Carboxylate-Rich Active Sites of Non-Heme Diiron Enzymes. Journal of the American Chemical Society, 1998, 120, 13531-13532.	6.6	103
335	Influences of Ligand Environment on the Spectroscopic Properties and Disproportionation Reactivity of Copperâ [~] 'Nitrosyl Complexes. Journal of the American Chemical Society, 1998, 120, 11408-11418.	6.6	137
336	Binucleating Ligand Structural Effects on (μ-Peroxo)- and Bis(μ-oxo)dicopper Complex Formation and Decay:  Competition between Arene Hydroxylation and Aliphatic Câ^'H Bond Activation. Inorganic Chemistry, 1997, 36, 6343-6356.	1.9	138
337	Influence of Copperâ^'Sulfur Covalency and Copperâ^'Copper Bonding on Valence Delocalization and Electron Transfer in the CuA Site of Cytochrome c Oxidase. Journal of the American Chemical Society, 1997, 119, 613-614.	6.6	95
338	X-ray Absorption Studies on the Mixed-Valence and Fully Reduced Forms of the Soluble CuADomains of CytochromecOxidase. Journal of the American Chemical Society, 1997, 119, 6135-6143.	6.6	112
339	Making and Breaking the Dioxygen Oâ~'O Bond:  New Insights from Studies of Synthetic Copper Complexes. Accounts of Chemical Research, 1997, 30, 227-237.	7.6	472
340	Photochemistry of (Fulvalene)tetracarbonyldiruthenium and Its Derivatives: Efficient Light Energy Storage Devices. Journal of the American Chemical Society, 1997, 119, 6757-6773.	6.6	136
341	Synthetic Models of the Inactive Copper(II)â ^{°,} Tyrosinate and Active Copper(II)â ^{°,} Tyrosyl Radical Forms of Galactose and Glyoxal Oxidases. Journal of the American Chemical Society, 1997, 119, 8217-8227.	6.6	218
342	Kinetic and thermodynamic parameters of copper-dioxygen interaction with different oxygen binding modes. Journal of Molecular Catalysis A, 1997, 117, 215-222.	4.8	26

#	Article	IF	CITATIONS
343	Understanding the oxidation chemistry of copper protein active sites: Copper complexes that activate dioxygen or stablize phenoxyl radicals. Journal of Inorganic Biochemistry, 1997, 67, 38.	1.5	0
344	Diastereoselective Intramolecular Câ~'H bond Activation by Optically Active Tris(pyrazolyl)hydroborate Complexes of Rhodium. Organometallics, 1996, 15, 4133-4140.	1.1	59
345	Independent Synthesis and Structural Characterization of a Mononuclear Copperâ "Hydroxide Complex Previously Assigned as a Copperâ "Superoxide Species. Inorganic Chemistry, 1996, 35, 6339-6342.	1.9	77
346	A Thiolate-Bridged, Fully Delocalized Mixed-Valence Dicopper(I,II) Complex That Models the CuABiological Electron-Transfer Site. Journal of the American Chemical Society, 1996, 118, 2101-2102.	6.6	187
347	Mechanistic Study of the Oxidative N-Dealkylation Reactions of Bis($\hat{1}$ /4-oxo)dicopper Complexes. Journal of the American Chemical Society, 1996, 118, 11575-11586.	6.6	212
348	Synthesis and Characterization of a Copper Complex of [Et2N(N2O2)]-Stabilized with Respect to NO Release in Aqueous Solution. Inorganic Chemistry, 1996, 35, 5410-5411.	1.9	23
349	Dioxygen Activation by a Copper(I) Complex of a New Tetradentate Tripodal Ligand:Â Mechanistic Insights into Peroxodicopper Core Reactivity. Journal of the American Chemical Society, 1996, 118, 10920-10921.	6.6	53
350	Structural, Spectroscopic, and Theoretical Characterization of Bis(μ-oxo)dicopper Complexes, Novel Intermediates in Copper-Mediated Dioxygen Activation. Journal of the American Chemical Society, 1996, 118, 11555-11574.	6.6	255
351	Synthetic Modeling of Nitrite Binding and Activation by Reduced Copper Proteins. Characterization of Copper(I)â°Nitrite Complexes That Evolve Nitric Oxide. Journal of the American Chemical Society, 1996, 118, 763-776.	6.6	131
352	Ab Initio Characterization of the Isomerism between the μ-η2:η2-Peroxo- and Bis(μ-oxo)dicopper Cores. Journal of the American Chemical Society, 1996, 118, 11283-11287.	6.6	99
353	Modeling of the Chemistry of the Active Site of Galactose Oxidase. Angewandte Chemie International Edition in English, 1996, 35, 1687-1690.	4.4	96
354	Insights into the reactivity of copper-peroxo species in proteins: Oî—,O bond cleavage and Cî—,H bond activation by novel synthetic copper-dioxygen adducts. Journal of Inorganic Biochemistry, 1995, 59, 662.	1.5	0
355	Structural Characterization of the First Example of a Bis(.muthiolato)dicopper(II) Complex. Relevance to Proposals for the Electron Transfer Sites in Cytochrome c Oxidase and Nitrous Oxide Reductase. Journal of the American Chemical Society, 1995, 117, 10745-10746.	6.6	92
356	A New Intermediate in Copper Dioxygen Chemistry: Breaking the O-O Bond To Form a {Cu2(.muO)2}2+ Core. Journal of the American Chemical Society, 1995, 117, 8865-8866.	6.6	126
357	Mixed Valence, Tricopper(I,II,I) Complexes with Thiolate Bridges. Progress toward Synthetic Models of the Putative {Cu2}3+ Sites in Nitrous Oxide Reductase and Cytochrome c Oxidase. Inorganic Chemistry, 1995, 34, 1632-1633.	1.9	47
358	New Copper and Rhodium Cyclopropanation Catalysts Supported by Chiral Bis(pyrazolyl)pyridines. A Metal-Dependent Enantioselectivity Switch. Organometallics, 1995, 14, 2148-2150.	1.1	58
359	Reductive Disproportionation of NO Mediated by Copper Complexes: Modeling N2O Generation by Copper Proteins and Heterogeneous Catalysts. Angewandte Chemie International Edition in English, 1994, 33, 895-897.	4.4	110
360	Durch Cuâ€Komplexe vermittelte reduktive Disproportionierung von NO: Nachahmung der Bildung von N ₂ O durch Kupferproteine und Heterogenkatalysatoren. Angewandte Chemie, 1994, 106, 917-919.	1.6	12

#	Article	IF	CITATIONS
361	Optically Active and C3-Symmetric Tris(pyrazolyl)hydroborate and Tris(pyrazolyl)phosphine Oxide Ligands: Synthesis and Structural Characterization. Organometallics, 1994, 13, 2855-2866.	1.1	90
362	Modeling Copper-Dioxygen Reactivity in Proteins: Aliphatic C-H Bond Activation by a New Dicopper(II)-Peroxo Complex. Journal of the American Chemical Society, 1994, 116, 9785-9786.	6.6	140
363	Synthetic Model of the Substrate Adduct to the Reduced Active Site of Copper Nitrite Reductase. Journal of the American Chemical Society, 1994, 116, 5475-5476.	6.6	74
364	Transition Metal Complexes of Optically Active Tris(pyrazolyl)hydroborates. Inorganic Chemistry, 1994, 33, 6361-6368.	1.9	49
365	Synthetic Analogs of Nitrite Adducts of Copper Proteins: Characterization and Interconversion of Dicopper(I,I) and -(I,II) Complexes Bridged Only by NO2 Journal of the American Chemical Society, 1994, 116, 2173-2174.	6.6	72
366	Modeling nitrogen oxide activation by copper proteins: Synthesis, characterization, and reactivity of copper nitrosyl complexes. Journal of Inorganic Biochemistry, 1993, 51, 353.	1.5	0
367	Modeling possible N2O formation routes in copper-mediated denitrification. Journal of Inorganic Biochemistry, 1993, 51, 363.	1.5	1
368	Synthesis and transition metal complexation of an enantiomerically pure tris(pyrazolyl)hydroborate ligand. Journal of the American Chemical Society, 1993, 115, 1153-1154.	6.6	60
369	Synthesis, structural characterization, and electrochemical behavior of copper(I) complexes of sterically hindered tris(3-tert-butyl- and 3,5-diphenylpyrazolyl)hydroborate ligands. Inorganic Chemistry, 1993, 32, 4889-4899.	1.9	102
370	Synthesis and structural and spectroscopic characterization of mononuclear copper nitrosyl complexes: models for nitric oxide adducts of copper proteins and copper-exchanged zeolites. Journal of the American Chemical Society, 1993, 115, 11285-11298.	6.6	172
371	Synthesis and characterization of novel trinuclear iron(II) and manganese(II) carboxylate complexes: structural trends in low valent iron and manganese carboxylates. Journal of the American Chemical Society, 1992, 114, 5240-5249.	6.6	133
372	Synthesis and structural characterization of a mononuclear copper nitrosyl complex. Journal of the American Chemical Society, 1992, 114, 4407-4408.	6.6	94
373	Enantiomerically pure copper(I) and zinc(II) complexes of a novel C3-symmetric polypyrazole ligand. Organometallics, 1992, 11, 2737-2739.	1.1	64
374	Characterization of mononuclear copper-nitrogen oxide complexes: Models of NOx binding to isolated active sites in copper proteins. Journal of Inorganic Biochemistry, 1992, 47, 33.	1.5	0
375	Models of the reduced forms of polyiron-oxo proteins: an asymmetric, triply carboxylate bridged diiron(II) complex and its reaction with dioxygen. Journal of the American Chemical Society, 1991, 113, 152-164.	6.6	130
376	Effects of a bridging dicarboxylate ligand on the synthesis and physical properties of (.muoxo)bis(.mucarboxylato)diiron(III) complexes. Inorganic Chemistry, 1991, 30, 2082-2092.	1.9	47
377	A model for the substrate adduct of copper nitrite reductase and its conversion to a novel tetrahedral copper(II) triflate complex. Inorganic Chemistry, 1991, 30, 4877-4880.	1.9	103
378	Synthesis and Characterization of the Linear Trinuclear Complexes[M3II(O2CCH3)6(biphme)2], M= Mn, Fe. Angewandte Chemie International Edition in English, 1990, 29, 812-814.	4.4	78

#	Article	IF	CITATIONS
379	A dinucleating hexaimidazole ligand and its dicopper(II) methanol inclusion complex. Journal of the American Chemical Society, 1989, 111, 4532-4533.	6.6	56
380	Self assembly and dioxygen reactivity of an asymmetric, triply bridged diiron(II) complex with imidazole ligands and an open coordination site. Journal of the American Chemical Society, 1989, 111, 8522-8523.	6.6	60
381	A general method for assembling (.muoxo)bis(.mucarboxylato)diiron(III) complexes with labile terminal sites using a bridging dicarboxylate ligand. Inorganic Chemistry, 1989, 28, 4557-4558.	1.9	33
382	Designed syntheses of heterobimetallic fulvalene complexes. Organometallics, 1986, 5, 1926-1928.	1.1	35
383	Carbonyl substitution and ring slippage upon reaction of trialkylphosphines with (fulvalene)diruthenium tetracarbonyl. X-ray structural analysis of (.eta.0:.eta.4-C10H8)Ru(PMe3)2CO and fluxional behavior of (.eta.5:.eta.5-C10H8)Ru2(CO)3L (L = phosphine). Organometallics, 1986, 5, 582-584.	1.1	18
384	Bimetallic activation of coordinated ligands. Reactions of the Lewis acid (ÎC5H5)(CO)3Mo+ PF6â^' with organo-iron and -molybdenum Î-1-methoxymethyl and ethyl complexes. Journal of Organometallic Chemistry, 1985, 294, 45-58.	0.8	13