Krishna Kumar Veeravalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3469443/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World Journal of Stem Cells, 2014, 6, 120.	2.8	171
2	Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1. Cell Reports, 2017, 21, 1681-1691.	6.4	95
3	p53- and Bax-Mediated Apoptosis in Injured Rat Spinal Cord. Neurochemical Research, 2011, 36, 2063-2074.	3.3	65
4	Matrix Metalloproteinase-12 Induces Blood–Brain Barrier Damage After Focal Cerebral Ischemia. Stroke, 2015, 46, 3523-3531.	2.0	63
5	Human umbilical cord blood stem cells upregulate matrix metalloproteinase-2 in rats after spinal cord injury. Neurobiology of Disease, 2009, 36, 200-212.	4.4	60
6	Temporal Regulation of Apoptotic and Anti-apoptotic Molecules After Middle Cerebral Artery Occlusion Followed by Reperfusion. Molecular Neurobiology, 2014, 49, 50-65.	4.0	58
7	Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway. Neurobiology of Disease, 2008, 32, 486-498.	4.4	55
8	Exosomes Treatment Mitigates Ischemic Brain Damage but Does Not Improve PostStroke Neurological Outcome. Cellular Physiology and Biochemistry, 2019, 52, 1280-1291.	1.6	51
9	Neuronal Apoptosis Is Inhibited by Cord Blood Stem Cells after Spinal Cord Injury. Journal of Neurotrauma, 2009, 26, 2057-2069.	3.4	49
10	Glioma stem cell invasion through regulation of the interconnected ERK, integrin α6 and N-cadherin signaling pathway. Cellular Signalling, 2012, 24, 2076-2084.	3.6	48
11	Exosomes Secreted by the Cocultures of Normal and Oxygen–Glucose-Deprived Stem Cells Improve Post-stroke Outcome. NeuroMolecular Medicine, 2019, 21, 529-539.	3.4	42
12	MMP-9, uPAR and Cathepsin B Silencing Downregulate Integrins in Human Glioma Xenograft Cells In Vitro and In Vivo in Nude Mice. PLoS ONE, 2010, 5, e11583.	2.5	39
13	MMP-12, a Promising Therapeutic Target for Neurological Diseases. Molecular Neurobiology, 2018, 55, 1405-1409.	4.0	39
14	Post-transcriptional inactivation of matrix metalloproteinase-12 after focal cerebral ischemia attenuates brain damage. Scientific Reports, 2015, 5, 9504.	3.3	38
15	MMP-9 and uPAR regulated glioma cell migration. Cell Adhesion and Migration, 2012, 6, 509-512.	2.7	37
16	Integrin α9β1-mediated cell migration in glioblastoma via SSAT and Kir4.2 potassium channel pathway. Cellular Signalling, 2012, 24, 272-281.	3.6	34
17	Urokinase Plasminogen Activator Receptor and/or Matrix Metalloproteinase-9 Inhibition Induces Apoptosis Signaling through Lipid Rafts in Glioblastoma Xenograft Cells. Molecular Cancer Therapeutics, 2010, 9, 2605-2617.	4.1	26
18	Human umbilical cord blood stem cells show PDGF-D–dependent glioma cell tropism in vitro and in vivo. Neuro-Oncology, 2010, 12, 453-65.	1.2	22

#	Article	lF	CITATIONS
19	Regulation of DNA Repair Mechanism in Human Glioma Xenograft Cells both In Vitro and In Vivo in Nude Mice. PLoS ONE, 2011, 6, e26191.	2.5	20
20	MMP-9 silencing regulates hTERT expression via \hat{l}^21 integrin-mediated FAK signaling and induces senescence in glioma xenograft cells. Cellular Signalling, 2011, 23, 2065-2075.	3.6	19
21	Mesenchymal Stem Cell Treatment Prevents Post-Stroke Dysregulation of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases. Cellular Physiology and Biochemistry, 2017, 44, 1360-1369.	1.6	19
22	Stem Cells Downregulate the Elevated Levels of Tissue Plasminogen Activator in Rats After Spinal Cord Injury. Neurochemical Research, 2009, 34, 1183-1194.	3.3	18
23	Prevention of the Severity of Post-ischemic Inflammation and Brain Damage by Simultaneous Knockdown of Toll-like Receptors 2 and 4. Neuroscience, 2018, 373, 82-91.	2.3	18
24	Attenuation of the Induction of TLRs 2 and 4 Mitigates Inflammation and Promotes Neurological Recovery After Focal Cerebral Ischemia. Translational Stroke Research, 2021, 12, 923-936.	4.2	18
25	Involvement of nitric oxide synthase in matrix metalloproteinase-9- and/or urokinase plasminogen activator receptor-mediated glioma cell migration. BMC Cancer, 2013, 13, 590.	2.6	17
26	Stem Cell Treatment After Cerebral Ischemia Regulates the Gene Expression of Apoptotic Molecules. Neurochemical Research, 2014, 39, 1511-1521.	3.3	15
27	Regulation of Proteases after Spinal Cord Injury. Journal of Neurotrauma, 2012, 29, 2251-2262.	3.4	14
28	Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Upregulate Myelin Basic Protein in Shiverer Mice. Stem Cells and Development, 2011, 20, 881-891.	2.1	9
29	Post-stroke mRNA expression profile of MMPs: effect of genetic deletion of MMP-12. Stroke and Vascular Neurology, 2018, 3, 153-159.	3.3	9
30	Stem cell treatment improves post stroke neurological outcomes: a comparative study in male and female rats. Stroke and Vascular Neurology, 2021, 6, 519-527.	3.3	6
31	Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells. International Journal of Oncology, 2012, 40, 509-18.	3.3	5
32	Neuronal apoptosis inhibited by cord blood stem cells after spinal cord injury. Journal of Neurotrauma, 0, , 110306202455053.	3.4	4
33	Transdifferentiation of differentiated stem cells contributes to remyelination. Stem Cell Research and Therapy, 2015, 6, 191.	5.5	3
34	Abstract TP106: Sex Differences After Mesenchymal Stem Cell Treatment on Post-Stroke Neurological Outcome. Stroke, 2018, 49, .	2.0	1