Haiyan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3469270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 13180-13191.	13.8	727
2	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie - International Edition, 2019, 58, 15841-15847.	13.8	648
3	Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review. Advanced Functional Materials, 2020, 30, 1909486.	14.9	570
4	Carbon-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis, 2017, 7, 7855-7865.	11.2	406
5	Revealing the role of crystal orientation of protective layers for stable zinc anode. Nature Communications, 2020, 11, 3961.	12.8	378
6	MoS ₂ /Graphene Nanosheets from Commercial Bulky MoS ₂ and Graphite as Anode Materials for High Rate Sodiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1702383.	19.5	350
7	Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy, 2019, 57, 728-736.	16.0	323
8	Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Materials, 2019, 23, 233-251.	18.0	279
9	Issues and solutions toward zinc anode in aqueous zincâ€ion batteries: A mini review. , 2020, 2, 540-560.		225
10	Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage. ACS Nano, 2019, 13, 11843-11852.	14.6	210
11	Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy, 2018, 44, 217-227.	16.0	209
12	Plasmaâ€Induced Amorphous Shell and Deep Cationâ€Site S Doping Endow TiO ₂ with Extraordinary Sodium Storage Performance. Advanced Materials, 2018, 30, e1801013.	21.0	180
13	Co ₃ O ₄ –CeO ₂ /C as a Highly Active Electrocatalyst for Oxygen Reduction Reaction in Al–Air Batteries. ACS Applied Materials & Interfaces, 2016, 8, 34422-34430.	8.0	159
14	1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy, 2019, 61, 361-369.	16.0	157
15	In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chemical Engineering Journal, 2020, 382, 122959.	12.7	149
16	A progressive nucleation mechanism enables stable zinc stripping–plating behavior. Energy and Environmental Science, 2021, 14, 5563-5571.	30.8	141
17	Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions. Energy and Environmental Science, 2020, 13, 1568-1592.	30.8	140
18	Emerging mechanisms and targeted therapy of ferroptosis in cancer. Molecular Therapy, 2021, 29, 2185-2208.	8.2	134

#	Article	IF	CITATIONS
19	Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 5254-5262.	8.0	129
20	Iron-Doped Cauliflower-Like Rutile TiO ₂ with Superior Sodium Storage Properties. ACS Applied Materials & Interfaces, 2017, 9, 6093-6103.	8.0	125
21	Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries. Applied Catalysis B: Environmental, 2019, 242, 209-217.	20.2	121
22	Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy, 2019, 64, 103937.	16.0	118
23	Advanced Filter Membrane Separator for Aqueous Zincâ€ion Batteries. Small, 2020, 16, e2003106.	10.0	118
24	The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive. Angewandte Chemie, 2019, 131, 15988-15994.	2.0	116
25	New Binderâ€Free Metal Phosphide–Carbon Felt Composite Anodes for Sodiumâ€Ion Battery. Advanced Energy Materials, 2018, 8, 1801197.	19.5	113
26	Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale, 2014, 6, 10235-10242.	5.6	112
27	NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2015, 280, 640-648.	7.8	112
28	Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3563.	10.3	107
29	Plasma‣trengthened Lithiophilicity of Copper Oxide Nanosheet–Decorated Cu Foil for Stable Lithium Metal Anode. Advanced Science, 2019, 6, 1901433.	11.2	106
30	Simultaneously Regulating the Ion Distribution and Electric Field to Achieve Dendriteâ€Free Zn Anode. Small, 2020, 16, e2000929.	10.0	106
31	Cu–MOF-Derived Cu/Cu ₂ O Nanoparticles and CuN _{<i>x</i>} C _{<i>y</i>} Species to Boost Oxygen Reduction Activity of Ketjenblack Carbon in Al–Air Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 413-421.	6.7	105
32	Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries. Journal of Power Sources, 2017, 343, 30-38.	7.8	99
33	Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode. Journal of Power Sources, 2018, 395, 305-313.	7.8	89
34	Understanding the synergistic effect of alkyl polyglucoside and potassium stannate as advanced hybrid corrosion inhibitor for alkaline aluminum-air battery. Chemical Engineering Journal, 2020, 383, 123162.	12.7	88
35	Defect-rich TiO2-δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. Journal of Power Sources, 2017, 354, 179-188	7.8	87
36	Hierarchical NiCo ₂ O ₄ Micro- and Nanostructures with Tunable Morphologies as Anode Materials for Lithium- and Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 16194-16201.	8.0	85

#	Article	IF	CITATIONS
37	Recent Progress and Future Trends of Aluminum Batteries. Energy Technology, 2019, 7, 86-106.	3.8	85
38	Facile and green synthesis of Co3O4 nanoplates/graphene nanosheets composite for supercapacitor. Journal of Solid State Electrochemistry, 2012, 16, 3593-3602.	2.5	82
39	Insights into KMnO4 etched N-rich carbon nanotubes as advanced electrocatalysts for Zn-air batteries. Applied Catalysis B: Environmental, 2020, 264, 118537.	20.2	81
40	High-Rate LiTi ₂ (PO ₄) ₃ @N–C Composite via Bi-nitrogen Sources Doping. ACS Applied Materials & Interfaces, 2015, 7, 28337-28345.	8.0	77
41	Electron-Injection-Engineering Induced Phase Transition toward Stabilized 1T-MoS ₂ with Extraordinary Sodium Storage Performance. ACS Nano, 2021, 15, 8896-8906.	14.6	77
42	Aqueous rechargeable lithium batteries using NaV ₆ O ₁₅ nanoflakes as high performance anodes. Journal of Materials Chemistry A, 2014, 2, 12999-13005.	10.3	75
43	N-doped rutile TiO 2 /C with significantly enhanced Na storage capacity for Na-ion batteries. Electrochimica Acta, 2017, 236, 43-52.	5.2	74
44	Electrode–Electrolyte Interfacial Chemistry Modulation for Ultraâ€High Rate Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	74
45	N-doped carbon coated LiTi2(PO4)3 as superior anode using PANi as carbon and nitrogen bi-sources for aqueous lithium ion battery. Electrochimica Acta, 2018, 279, 279-288.	5.2	72
46	Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. Energy Storage Materials, 2017, 8, 49-58.	18.0	70
47	A facile annealing strategy for achieving <i>in situ</i> controllable Cu ₂ O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes. Journal of Materials Chemistry A, 2018, 6, 18444-18448.	10.3	70
48	Oxygen Evolution in Overcharged Li <i>_x</i> Ni _{1/3} Co _{1/3} Mn _{1/3} O ₂ Electrode and Its Thermal Analysis Kinetics. Chinese Journal of Chemistry, 2011, 29, 1583-1588.	4.9	69
49	Synergistically enhanced oxygen reduction activity of MnO _x –CeO ₂ /Ketjenblack composites. Chemical Communications, 2015, 51, 10123-10126.	4.1	69
50	Adjusting the yolk–shell structure of carbon spheres to boost the capacitive K ⁺ storage ability. Journal of Materials Chemistry A, 2018, 6, 23318-23325.	10.3	69
51	Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries. Journal of Materials Chemistry A, 2019, 7, 20840-20846.	10.3	68
52	Hybrid high-concentration electrolyte significantly strengthens the practicability of alkaline aluminum-air battery. Energy Storage Materials, 2020, 31, 310-317.	18.0	67
53	TiO2@C nanosheets with highly exposed (0 0 1) facets as a high-capacity anode for Na-ion batteries. Chemical Engineering Journal, 2018, 332, 57-65.	12.7	66
54	Revealing the Twoâ€Dimensional Surface Diffusion Mechanism for Zinc Dendrite Formation on Zinc Anode. Small, 2022, 18, e2104148.	10.0	66

#	Article	IF	CITATIONS
55	A comprehensive review on the fabrication, modification and applications of Na ₃ V ₂ (PO ₄) ₂ F ₃ cathodes. Journal of Materials Chemistry A, 2020, 8, 21387-21407.	10.3	65
56	A Three in One Strategy to Achieve Zirconium Doping, Boron Doping, and Interfacial Coating for Stable LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode. Advanced Science, 2021, 8, 2001809.	11.2	63
57	Issues and rational design of aqueous electrolyte for Znâ€ion batteries. SusMat, 2021, 1, 432-447.	14.9	62
58	Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chemical Engineering Journal, 2020, 395, 124922.	12.7	61
59	NH4V3O8/carbon nanotubes composite cathode material with high capacity and good rate capability. Journal of Power Sources, 2011, 196, 9786-9791.	7.8	58
60	Three-dimensional porous CoNiO2@reduced graphene oxide nanosheet arrays/nickel foam as a highly efficient bifunctional electrocatalyst for overall water splitting. Tungsten, 2020, 2, 390-402.	4.8	58
61	Li _x V ₂ O ₅ /LiV ₃ O ₈ nanoflakes with significantly improved electrochemical performance for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 8009-8016.	10.3	53
62	Core-shell Co/CoNx@C nanoparticles enfolded by Co-N doped carbon nanosheets as a highly efficient electrocatalyst for oxygen reduction reaction. Carbon, 2018, 138, 300-308.	10.3	53
63	Nanoparticulate Mn0.3Ce0.7O2: a novel electrocatalyst with improved power performance for metal/air batteries. Journal of Materials Chemistry A, 2013, 1, 12512.	10.3	47
64	Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi2(PO4)3/C as a superior anode. Scientific Reports, 2015, 5, 10733.	3.3	46
65	Engineering the crystal orientation of Na ₃ V ₂ (PO ₄) ₂ F ₃ @rGO microcuboids for advanced sodium-ion batteries. Materials Chemistry Frontiers, 2020, 4, 2932-2942.	5.9	46
66	Synthesis of LiV3O8 nanosheets as a high-rate cathode material for rechargeable lithium batteries. CrystEngComm, 2012, 14, 2831.	2.6	44
67	Nitrogen Plasma-Treated Core–Bishell Si@SiO _{<i>x</i>} @TiO _{2â^Î} : Nanoparticles with Significantly Improved Lithium Storage Performance. ACS Applied Materials & Interfaces, 2019, 11, 27658-27666.	8.0	44
68	Enhanced Electrochemical Properties of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ at Elevated Temperature by Simultaneous Structure and Interface Regulating. Journal of the Electrochemical Society, 2019, 166, A1439-A1448.	2.9	44
69	Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance. Electrochimica Acta, 2019, 309, 242-252.	5.2	44
70	Comprehensive analysis of IncRNA-associated ceRNA network in colorectal cancer. Biochemical and Biophysical Research Communications, 2019, 508, 374-379.	2.1	44
71	Dual-Element-Modified Single-Crystal LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ as a Highly Stable Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 43039-43050.	8.0	44
72	Long-lived Aqueous Rechargeable Lithium Batteries Using Mesoporous LiTi2(PO4)3@C Anode. Scientific Reports, 2015, 5, 17452.	3.3	43

#	Article	IF	CITATIONS
73	Functional characterization of a type 2 metallothionein gene, SsMT2, from alkaline-tolerant Suaeda salsa. Scientific Reports, 2017, 7, 17914.	3.3	43
74	Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries. Nanoscale Horizons, 2020, 5, 895-903.	8.0	42
75	Thermal Behavior Investigation of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ â€Based Liâ€ion Battery under Overcharged Test. Chinese Journal of Chemistry, 2011, 29, 27-32.	4.9	41
76	Interfacial Design of Dendriteâ€Free Zinc Anodes for Aqueous Zincâ€Ion Batteries. Angewandte Chemie, 2020, 132, 13280-13291.	2.0	40
77	Electrochemical interface reconstruction to eliminate surface heterogeneity for dendrite-free zinc anodes. Energy Storage Materials, 2022, 47, 319-326.	18.0	39
78	High-power double-face flow Al-air battery enabled by CeO2 decorated MnOOH nanorods catalyst. Chemical Engineering Journal, 2021, 406, 126772.	12.7	37
79	Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. Journal of Materials Chemistry A, 2021, 9, 8221-8247.	10.3	37
80	Synthesis and electrochemical properties of NaV3O8 nanoflakes as high-performance cathode for Li-ion battery. RSC Advances, 2014, 4, 8328.	3.6	36
81	Synthesis and characterization of VO2(B)/graphene nanocomposite for supercapacitors. Journal of Materials Science: Materials in Electronics, 2015, 26, 4226-4233.	2.2	36
82	N-Doped carbon supported Co ₃ O ₄ nanoparticles as an advanced electrocatalyst for the oxygen reduction reaction in Al–air batteries. RSC Advances, 2016, 6, 55552-55559.	3.6	36
83	Enhanced sodium ion storage performance of Na3V2(PO4)3 with N-doped carbon by folic acid as carbon-nitrogen source. Journal of Alloys and Compounds, 2018, 732, 454-459.	5.5	36
84	Reviving bulky MoS ₂ as an advanced anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10988-10997.	10.3	36
85	Porous spherical Na3V2 (PO4)3/C composites synthesized via a spray drying -assisted process with high-rate performance as cathode materials for sodium-ion batteries. Solid State Ionics, 2017, 308, 161-166.	2.7	35
86	Fe ₃ C@Fe/N Doped Graphene-Like Carbon Sheets as a Highly Efficient Catalyst in Al-Air Batteries. Journal of the Electrochemical Society, 2017, 164, F475-F483.	2.9	34
87	Synthesis and electrochemical performances of Na ₃ V ₂ (PO ₄) ₂ F ₃ /C composites as cathode materials for sodium ion batteries. RSC Advances, 2019, 9, 30628-30636.	3.6	33
88	Advanced LiTi2(PO4)3/C anode by incorporation of carbon nanotubes for aqueous lithium-ion batteries. Ionics, 2017, 23, 575-583.	2.4	32
89	The effect of solid electrolyte interface formation conditions on the aging performance of Li-ion cells. Journal of Solid State Electrochemistry, 2011, 15, 1987-1995.	2.5	31
90	Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries. Chemical Communications, 2021, 57, 4243-4246.	4.1	31

#	Article	IF	CITATIONS
91	Porous Fe ₂ O ₃ Nanoparticles as Lithium-Ion Battery Anode Materials. ACS Applied Nano Materials, 2021, 4, 8744-8752.	5.0	31
92	Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature. SusMat, 2022, 2, 357-367.	14.9	31
93	Wave propagation of functionally graded material plates in thermal environments. Ultrasonics, 2011, 51, 940-952.	3.9	30
94	How does Molybdenum Disulfide Store Charge: A Minireview. ChemSusChem, 2020, 13, 1354-1365.	6.8	30
95	Modification on water electrochemical environment for durable Al-Air Battery: Achieved by a Low-Cost sucrose additive. Chemical Engineering Journal, 2022, 438, 135538.	12.7	30
96	Titanium Monoxide-Stabilized Silicon Nanoparticles with a Litchi-like Structure as an Advanced Anode for Li-ion Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 48467-48475.	8.0	29
97	Size controlling and surface engineering enable NaTi2(PO4)3/C outstanding sodium storage properties. Electrochimica Acta, 2018, 289, 21-28.	5.2	28
98	Hierarchical yolk–shell layered potassium niobate for tuned pH-dependent photocatalytic H ₂ evolution. Catalysis Science and Technology, 2017, 7, 1000-1005.	4.1	27
99	Oxygen Vacancy Engineering in Titanium Dioxide for Sodium Storage. Chemistry - an Asian Journal, 2021, 16, 3-19.	3.3	27
100	A piece of common cellulose paper but with outstanding functions for advanced aqueous zinc-ion batteries. Materials Today Energy, 2022, 28, 101076.	4.7	27
101	A Review of Al Alloy Anodes for Al–Air Batteries in Neutral and Alkaline Aqueous Electrolytes. Acta Metallurgica Sinica (English Letters), 2021, 34, 309-320.	2.9	26
102	Ti3+ self-doped Li4Ti5O12 with rich oxygen vacancies for advanced lithium-ion batteries. Ionics, 2020, 26, 1739-1747.	2.4	25
103	Defect engineering of molybdenum disulfide for energy storage. Materials Chemistry Frontiers, 2021, 5, 5880-5896.	5.9	25
104	Facile synthesis and lithium storage performance of (NH4)2V3O8 nanoflakes. Journal of Applied Electrochemistry, 2016, 46, 879-885.	2.9	24
105	The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties. Signal Transduction and Targeted Therapy, 2020, 5, 197.	17.1	24
106	Na ⁺ and Zr ⁴⁺ co-doped Li ₄ Ti ₅ O ₁₂ as anode materials with superior electrochemical performance for lithium ion batteries. RSC Advances, 2016, 6, 90455-90461.	3.6	23
107	Synthesis and high cycle performance of Li ₂ ZnTi ₃ O ₈ /C anode material promoted by asphalt as a carbon precursor. RSC Advances, 2016, 6, 49298-49306.	3.6	22
108	Sulfur and nitrogen-doped Li4Ti5O12/rGO as an anode material for advanced sodium-ion batteries. Journal of Alloys and Compounds, 2021, 857, 158190.	5.5	22

#	Article	IF	CITATIONS
109	Intrinsically zincophobic protective layer for dendrite-free zinc metal anode. Chinese Chemical Letters, 2022, 33, 2653-2657.	9.0	22
110	Engineering hierarchical structure and surface of Na4MnV(PO4)3 for ultrafast sodium storage by a scalable ball milling approach. Nano Energy, 2022, 99, 107396.	16.0	22
111	Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. Energy Storage Materials, 2022, 51, 660-670.	18.0	22
112	On an easy way to prepare highly efficient Fe/N-co-doped carbon nanotube/nanoparticle composite for oxygen reduction reaction in Al–air batteries. Journal of Materials Science, 2018, 53, 10280-10291.	3.7	21
113	Facile synthesis of TiP2O7/C nanoparticles as a competitive anode for aqueous lithium ion batteries. Electrochimica Acta, 2018, 278, 42-50.	5.2	21
114	Phosphoric acid induced homogeneous crosslinked phosphorus doped porous Si nanoparticles with superior lithium storage performance. Applied Surface Science, 2020, 509, 144873.	6.1	21
115	The fabrication of hierarchical MoO2@MoS2/rGO composite as high reversible anode material for lithium ion batteries. Electrochimica Acta, 2020, 364, 136996.	5.2	19
116	Three-Dimensional MnCo2O4.5Mesoporous Networks as an Electrocatalyst for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2015, 162, A2302-A2307.	2.9	18
117	Facile preparation of robust porous MoS2/C nanosheet networks as anode material for sodium ion batteries. Journal of Materials Science, 2019, 54, 2472-2482.	3.7	18
118	Plasma-treated Ti ³⁺ -doped sodium titanate nanosheet arrays on titanium foil as a lithiophilic current collector for a stable lithium metal anode. Chemical Communications, 2019, 55, 6551-6554.	4.1	17
119	Facile Fabrication of CeO2/Electrochemically Reduced Graphene Oxide Nanocomposites for Vanillin Detection in Commercial Food Products. Nanomaterials, 2020, 10, 1356.	4.1	17
120	Regulating solvation and interface chemistry to inhibit corrosion of the aluminum anode in aluminum–air batteries. Journal of Materials Chemistry A, 2022, 10, 9506-9514.	10.3	17
121	Synergistic regulating the aluminum corrosion by ellagic acid and sodium stannate hybrid additives for advanced aluminum-air battery. Electrochimica Acta, 2022, 417, 140311.	5.2	17
122	Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries. Journal of Central South University, 2018, 25, 2320-2331.	3.0	16
123	Transcriptome profiling analysis of sex-based differentially expressed mRNAs and IncRNAs in the brains of mature zebrafish (Danio rerio). BMC Genomics, 2019, 20, 830.	2.8	16
124	Electrode–Electrolyte Interfacial Chemistry Modulation for Ultraâ€High Rate Sodiumâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	16
125	Advanced Materials Prepared via Metallic Reduction Reactions for Electrochemical Energy Storage. Small Methods, 2020, 4, 2000613.	8.6	15
126	Scalable slurry-coating induced integrated 3D lithiophilic architecture for stable lithium metal anodes. Journal of Power Sources, 2021, 485, 229334.	7.8	15

#	Article	IF	CITATIONS
127	Dual carbon coating engineering endows hollow structured TiO2 with superior sodium storage performance. Journal of Power Sources, 2021, 489, 229516.	7.8	15
128	Direct and indirect shoot and bulblet regeneration from cultured leaf explants of Lilium pumilum, an endangered species. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 69-75.	2.1	14
129	Multi-layered Al2O3/LixV2O5/LiV3O8 nanoflakes with superior cycling stability as cathode material for Li-ion battery. Electrochimica Acta, 2015, 157, 211-217.	5.2	14
130	Influence of Iron Source Type on the Electrocatalytic Activity toward Oxygen Reduction Reaction in Fe-N/C for Al-Air Batteries. Journal of the Electrochemical Society, 2018, 165, F662-F670.	2.9	14
131	Cu/Cu2O nanoparticles co-regulated carbon catalyst for alkaline Al-air batteries. Chinese Chemical Letters, 2021, 32, 2427-2432.	9.0	14
132	Lithium reduction reaction for interfacial regulation of lithium metal anode. Chemical Communications, 2022, 58, 2597-2611.	4.1	14
133	Renewable waste biomass-derived carbon materials for energy storage. Journal Physics D: Applied Physics, 2022, 55, 313002.	2.8	14
134	Solvothermal synthesis and self-assembling mechanism of micro-nano spherical LiFePO ₄ with high tap density. RSC Advances, 2016, 6, 75602-75608.	3.6	13
135	Electrochemical presodiation promoting lithium storage performance of Mo-based anode materials. Ceramics International, 2017, 43, 11967-11972.	4.8	13
136	Porous lithium titanate nanosheets as an advanced anode material for sodium ion batteries. Journal of Materials Science, 2020, 55, 4372-4381.	3.7	12
137	A dual-electrolyte system for highly efficient Al–air batteries. Chemical Communications, 2022, 58, 3282-3285.	4.1	12
138	High performance Li4Ti5O12/CN anode material promoted by melamine–formaldehyde resin as carbon–nitrogen precursor. RSC Advances, 2015, 5, 55994-56000.	3.6	11
139	Oxygen plasma induced interfacial CoOx/Phthalocyanine Cobalt as bifunctional electrocatalyst towards oxygen-involving reactions. International Journal of Hydrogen Energy, 2022, 47, 9905-9914.	7.1	11
140	Interfacial Reviving of the Degraded LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode by LiPO ₃ Repair Strategy. Small, 2022, 18, e2107346.	10.0	11
141	Engineering Crystal Orientation of Cathode for Advanced Lithiumâ€lon Batteries: A Minireview. Chemical Record, 2022, 22, .	5.8	11
142	Core-Bishell Fe-Ni @ Fe ₃ O ₄ @ C Nanoparticles as an Advanced Anode for Rechargeable Nickel-Iron Battery. Journal of the Electrochemical Society, 2017, 164, A1333-A1338.	2.9	10
143	Enhanced electrochemical properties of Li2ZnTi3O8/C nanocomposite synthesized with phenolic resin as carbon source. Journal of Solid State Electrochemistry, 2017, 21, 125-131.	2.5	10
144	Nickel Nanoparticles Supported on Nitrogen-Doped Carbon for Vanillin Detection. ACS Applied Nano Materials, 2020, 3, 11791-11800.	5.0	10

#	Article	IF	CITATIONS
145	Molybdenum host and interphase induced decentralized lithium deposition for dendrite-free lithium metal anodes. Chemical Engineering Journal, 2021, 426, 131110.	12.7	9
146	Electrochemical Properties of Rutile TiO2 Nanorod Array in Lithium Hydroxide Solution. Nanoscale Research Letters, 2016, 11, 448.	5.7	8
147	A Strategy to Achieve Well-Dispersed Hollow Nitrogen-Doped Carbon Microspheres with Trace Iron for Highly Efficient Oxygen Reduction Reaction in Al-Air Batteries. Journal of the Electrochemical Society, 2018, 165, A3766-A3772.	2.9	8
148	Selective Interface Synthesis of Cobalt Metaphosphate Nanosheet Arrays Motivated by Functionalized Carbon Cloths for Fast and Durable Na/K-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 34410-34418.	8.0	8
149	An Electrochemical Sensor Based on a Nitrogen-Doped Carbon Material and PEI Composites for Sensitive Detection of 4-Nitrophenol. Nanomaterials, 2022, 12, 86.	4.1	8
150	Turn "Waste―into Wealth: A Facile Reviving Strategy for Degraded Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathodes. Industrial & Engineering Chemistry Research, 2022, 61, 141-151.	3.7	7
151	Micropores regulating enables advanced carbon sphere catalyst for Zn-air batteries. Green Energy and Environment, 2023, 8, 308-317.	8.7	6
152	Identification and metaâ€ʿanalysis of copy number variationâ€ʿdriven circadian clock genes for colorectal cancer. Oncology Letters, 2019, 18, 4816-4824.	1.8	6
153	Evaluation of Intravenous Parecoxib Infusion Pump of Patient-Controlled Analgesia Compared to Fentanyl for Postoperative Pain Management in Laparoscopic Liver Resection. Medical Science Monitor, 2018, 24, 8224-8231.	1.1	5
154	Titelbild: The Threeâ€Dimensional Dendriteâ€Free Zinc Anode on a Copper Mesh with a Zincâ€Oriented Polyacrylamide Electrolyte Additive (Angew. Chem. 44/2019). Angewandte Chemie, 2019, 131, 15701-15701.	2.0	4
155	Li4Ti5O12/C anode material with high-rate performance using phenanthroline as carbon precursor. Ionics, 2015, 21, 629-634.	2.4	3
156	A high-capacity self-sacrificial additive based on electroactive sodiated carbonyl groups for sodium-ion batteries. Chemical Communications, 2022, 58, 8702-8705.	4.1	3
157	Oxocarbons Electrode Materials for Alkali Ion Batteries: Challenges, Strategies and Development. Batteries and Supercaps, 2021, 4, 1791-1802.	4.7	2
158	Synthesis and characterization of spherical LiNi <inf>0.7</inf> Co <inf>0.15</inf> Mn <inf>0.15</inf> O <inf>2</inf> via co-precipitation. , 2010, , .		0
159	AtPHB2 regulates salt stress response in Arabidopsis thaliana. Plant Growth Regulation, 2021, 94, 23-32.	3.4	0