
Peter G Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3468894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nature Medicine, 1999, 5, 582-585.	30.7	463
2	Oxidative Stress in Developmental Origins of Disease: Teratogenesis, Neurodevelopmental Deficits, and Cancer. Toxicological Sciences, 2009, 108, 4-18.	3.1	358
3	A teratologic suppressor role for p53 in benzo(a)pyrene–treated transgenic p53-deficient mice. Nature Genetics, 1995, 10, 181-187.	21.4	234
4	Oxidative damage in chemical teratogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 396, 65-78.	1.0	225
5	GLUCURONIDATION AND THE UDP-GLUCURONOSYLTRANSFERASES IN HEALTH AND DISEASE. Drug Metabolism and Disposition, 2004, 32, 281-290.	3.3	224
6	Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicology and Applied Pharmacology, 2005, 207, 354-366.	2.8	200
7	An embryoprotective role for glucoseâ€6â€phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. FASEB Journal, 2000, 14, 111-127.	0.5	160
8	Decreased glucuronidation and increased bioactivation of acetaminophen in Gilbert's syndrome. Gastroenterology, 1992, 102, 577-586.	1.3	143
9	Biochemical Toxicology of Chemical Teratogenesis. Critical Reviews in Biochemistry and Molecular Biology, 1996, 31, 1-40. Evidence for embryonic prostaglandin H synthase-catalyzed bioactivation and reactive oxygen	5.2	143
10	species-mediated oxidation of cellular macromolecules in phenytoin and benzo[a]pyrene teratogenesis11Preliminary reports of this research were presented at the 33rd, 34th, and 35th Annual Meetings of the Society of Toxicology, Dallas, Texas, March 1994 (Toxicologist 14:164; 1994); Baltimore,		

#	Article	IF	CITATIONS
19	Embryonic prostaglandin H synthaseâ€2 (PHSâ€2) expression and benzo[α]pyrene teratogenicity in PHSâ€2 knockout mice 1. FASEB Journal, 2002, 16, 1001-1009.	0.5	52
20	Prostaglandin H synthase atalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal degeneration 1. FASEB Journal, 2006, 20, 638-650.	0.5	50
21	Hypoxia Provokes Base Excision Repair Changes and a Repair-Deficient, Mutator Phenotype in Colorectal Cancer Cells. Molecular Cancer Research, 2014, 12, 1407-1415.	3.4	47
22	Brain Glucose-6-phosphate Dehydrogenase Protects against Endogenous Oxidative DNA Damage and Neurodegeneration in Aged Mice. ACS Chemical Neuroscience, 2013, 4, 1123-1132.	3.5	46
23	Enhanced acetaminophen toxicity in rats with bilirubin glucuronyl transferase deficiency. Hepatology, 1989, 10, 163-167.	7.3	45
24	Pharmacological studies on the potentiation of phenytoin teratogenicity by acetaminophen. Teratology, 1986, 33, 53-72.	1.6	43
25	Inhibition of trimethadione and dimethadione teratogenicity by the cyclooxygenase inhibitor acetylsalicylic acid: A unifying hypothesis for the teratologic effects of hydantoin anticonvulsants and structurally related compounds. Toxicology and Applied Pharmacology, 1989, 97, 406-414.	2.8	43
26	Receptor- and Reactive Intermediate-Mediated Mechanisms of Teratogenesis. Handbook of Experimental Pharmacology, 2010, , 131-162.	1.8	42
27	Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. Birth Defects Research Part C: Embryo Today Reviews, 2016, 108, 108-130.	3.6	42
28	Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Research, 2019, 111, 714-748.	1.5	40
29	Embryopathic effects of thalidomide and its hydrolysis products in rabbit embryo culture: evidence for a prostaglandin H synthase (PHS)â€dependent, reactive oxygen species (ROS)â€mediated mechanism. FASEB Journal, 2011, 25, 2468-2483.	0.5	39
30	Peroxidase-Dependent Bioactivation and Oxidation of DNA and Protein in Benzo[a]Pyrene-Initiated Micronucleus Formation. Free Radical Biology and Medicine, 1997, 23, 579-596.	2.9	37
31	Oxidative DNA damage in the in utero initiation of postnatal neurodevelopmental deficits by normal fetal and ethanol-enhanced oxidative stress in oxoguanine glycosylase 1 knockout mice. Free Radical Biology and Medicine, 2015, 78, 23-29.	2.9	37
32	Embryonic catalase protects against endogenous and phenytoinâ€enhanced DNA oxidation and embryopathies in acatalasemic and human catalaseâ€expressing mice. FASEB Journal, 2011, 25, 2188-2200.	0.5	36
33	Enhancement of murine phenytoin teratogenicity by the gamma-glutamylcysteine synthetase inhibitor L-buthionine-(S, R)-sulfoximine and by the glutathione depletor diethyl maleate. Teratology, 1989, 40, 127-141.	1.6	33
34	The peroxynitrite pathway in development: Phenytoin and benzo[a]pyrene embryopathies in inducible nitric oxide synthase knockout mice. Free Radical Biology and Medicine, 2004, 37, 1703-1711.	2.9	33
35	Embryoprotective Role of Endogenous Catalase in Acatalasemic and Human Catalase-Expressing Mouse Embryos Exposed in Culture to Developmental and Phenytoin-Enhanced Oxidative Stress. Toxicological Sciences, 2011, 120, 428-438.	3.1	33
36	Hyperthermia-mediated drug delivery induces biological effects at the tumor and molecular levels that improve cisplatin efficacy in triple negative breast cancer. Journal of Controlled Release, 2018, 282, 35-45.	9.9	33

#	Article	IF	CITATIONS
37	Atm â€null mice exhibit enhanced radiationâ€induced birth defects and a hybrid form of embryonic cell death indicating a teratological suppressor function for ATM. FASEB Journal, 2004, 18, 896-898.	0.5	32
38	Methamphetamine oxidative stress, neurotoxicity, and functional deficits are modulated by nuclear factor-E2-related factor 2. Free Radical Biology and Medicine, 2015, 89, 358-368.	2.9	32
39	Cockayne Syndrome B Protects Against Methamphetamine-Enhanced Oxidative DNA Damage in Murine Fetal Brain and Postnatal Neurodevelopmental Deficits. Antioxidants and Redox Signaling, 2011, 14, 747-756.	5.4	29
40	Developmental role of nuclear factor E2-related factor 2 in mitigating methamphetamine fetal toxicity and postnatal neurodevelopmental deficits. Free Radical Biology and Medicine, 2013, 65, 620-631.	2.9	28
41	A Developmental Role for Ataxia-Telangiectasia Mutated in Protecting the Embryo from Spontaneous and Phenytoin-Enhanced Embryopathies in Culture. Toxicological Sciences, 2006, 93, 156-163.	3.1	27
42	Variable In Vivo Embryoprotective Role for Ataxia-Telangiectasia–Mutated against Constitutive and Phenytoin-Enhanced Oxidative Stress in Atm Knockout Mice. Toxicological Sciences, 2006, 93, 146-155.	3.1	26
43	Biotransformation and toxicity of acetaminophen in congenic RHA rats with or without a hereditary deficiency in bilirubin UDP-glucuronosyltransferase. Toxicology and Applied Pharmacology, 1992, 117, 81-87.	2.8	24
44	Evidence for Ras-Dependent Signal Transduction in Phenytoin Teratogenicity. Toxicology and Applied Pharmacology, 2002, 184, 144-152.	2.8	24
45	Embryonic Catalase Protects Against Ethanol-Initiated DNA Oxidation and Teratogenesis in Acatalasemic and Transgenic Human Catalase–Expressing Mice. Toxicological Sciences, 2013, 134, 400-411.	3.1	24
46	Effects of N-acetylcysteine on fetal development and on phenytoin teratogenicity in mice. Teratogenesis, Carcinogenesis, and Mutagenesis, 1988, 8, 65-79.	0.8	23
47	Breast cancer 1 (BRCA1)-deficient embryos develop normally but are more susceptible to ethanol-initiated DNA damage and embryopathies. Redox Biology, 2016, 7, 30-38.	9.0	23
48	Species differences in methanol and formic acid pharmacokinetics in mice, rabbits and primates. Toxicology and Applied Pharmacology, 2010, 247, 28-35.	2.8	22
49	A role for glutathione, independent of oxidative stress, in the developmental toxicity of methanol. Toxicology and Applied Pharmacology, 2013, 273, 508-515.	2.8	21
50	The free radical spin trapping agent phenylbutylnitrone reduces fetal brain DNA oxidation and postnatal cognitive deficits caused by in utero exposure to a non-structurally teratogenic dose of ethanol: A role for oxidative stress. Free Radical Biology and Medicine, 2013, 60, 223-232.	2.9	21
51	Human Interindividual Variation in Lymphocyte UDP-Glucuronosyltransferases as a Determinant of In Vitro Benzo[a]pyrene Covalent Binding and Cytotoxicity. Toxicological Sciences, 2004, 78, 32-40.	3.1	20
52	Phenytoin embryotoxicity: Role of enzymatic bioactivation in a murine embryo culture model. Teratology, 1989, 40, 311-320.	1.6	19
53	Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase. Toxicology and Applied Pharmacology, 2011, 252, 55-61.	2.8	19
54	Deficient DNA repair exacerbates ethanol-initiated DNA oxidation and embryopathies in ogg1 knockout mice: gender risk and protection by a free radical spin trapping agent. Archives of Toxicology, 2016, 90, 415-425.	4.2	18

#	Article	IF	CITATIONS
55	Reduced 3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy)-Initiated Oxidative DNA Damage and Neurodegeneration in Prostaglandin H Synthase-1 Knockout Mice. ACS Chemical Neuroscience, 2010, 1, 366-380.	3.5	17
56	Fluorothalidomide: A Characterization of Maternal and Developmental Toxicity in Rabbits and Mice. Toxicological Sciences, 2011, 122, 157-169.	3.1	17
57	Enhanced tumorigenesis in p53 knockout mice exposed in utero to high-dose vitamin E. Carcinogenesis, 2006, 27, 1358-1368.	2.8	16
58	Prostaglandin H Synthase-1-Catalyzed Bioactivation of Neurotransmitters, Their Precursors, and Metabolites: Oxidative DNA Damage and Electron Spin Resonance Spectroscopy Studies. Chemical Research in Toxicology, 2009, 22, 842-852.	3.3	16
59	Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture. Toxicology and Applied Pharmacology, 2015, 287, 232-239.	2.8	16
60	DNA damage and synaptic and behavioural disorders in glucose-6-phosphate dehydrogenase-deficient mice. Redox Biology, 2020, 28, 101332.	9.0	16
61	Oxoguanine Glycosylase 1 (OGG1) Protects Cells from DNA Double-Strand Break Damage Following Methylmercury (MeHg) Exposure. Toxicological Sciences, 2012, 128, 272-283.	3.1	15
62	Species- and strain-dependent teratogenicity of methanol in rabbits and mice. Reproductive Toxicology, 2011, 31, 50-58.	2.9	14
63	Enhanced NADPH oxidases and reactive oxygen species in the mechanism of methanol-initiated protein oxidation and embryopathies in vivo and in embryo culture. Archives of Toxicology, 2016, 90, 717-730.	4.2	14
64	Repetitive Microvolumetric Sampling and Analysis of Acetaminophen and its Toxicologically Relevant Metabolites in Murine Plasma and Urine Using High Performance Liquid Chromatography. Journal of Analytical Toxicology, 1985, 9, 217-221.	2.8	13
65	Methanol exposure does not produce oxidatively damaged DNA in lung, liver or kidney of adult mice, rabbits or primates. Toxicology and Applied Pharmacology, 2011, 250, 147-153.	2.8	12
66	Human prostaglandin H synthase (hPHS)-1- and hPHS-2-dependent bioactivation, oxidative macromolecular damage, and cytotoxicity of dopamine, its precursor, and its metabolites. Free Radical Biology and Medicine, 2011, 50, 295-304.	2.9	12
67	Methanol exposure does not lead to accumulation of oxidative DNA damage in bone marrow and spleen of mice, rabbits or primates. Molecular Carcinogenesis, 2011, 50, 163-172.	2.7	12
68	Protective role of endogenous catalase in baseline and phenytoin-enhanced neurodevelopmental and behavioral deficits initiated in utero and in aged mice. Reproductive Toxicology, 2012, 33, 361-373.	2.9	12
69	Reduced tumorigenesis in p53 knockout mice exposed in utero to lowâ€dose vitamin E. Cancer, 2009, 115, 1563-1575.	4.1	10
70	Analysis of toxicologically relevant metabolites of phenytoin in biological samples by high-performance liquid chromatography. Biomedical Applications, 1985, 338, 242-248.	1.7	9
71	In UteroOrigins of Cancer: Maternal Dietary Vitamin E, Fetal Oxidative DNA Damage, and Postnatal Carcinogenesis in p53 Knockout Mice. Annals of the New York Academy of Sciences, 2004, 1031, 395-398.	3.8	9
72	Methanol teratogenicity in mutant mice with deficient catalase activity and transgenic mice expressing human catalase. Reproductive Toxicology, 2013, 36, 33-39.	2.9	9

#	Article	IF	CITATIONS
73	Measurement of the Oxidative DNA Lesion 8-Oxoguanine (8-oxoG) by ELISA or by High-Performance Liquid Chromatography (HPLC) with Electrochemical Detection. Methods in Molecular Biology, 2019, 1965, 313-328.	0.9	8
74	Characterization of Epigenetic Histone Activation/Repression Marks in Sequences of Genes by Chromatin Immunoprecipitation-Quantitative Polymerase Chain Reaction (ChIP-qPCR). Methods in Molecular Biology, 2019, 1965, 389-403.	0.9	8
75	Tetracyclineâ€dependent regulation of formamidopyrimidine DNA glycosylase in transgenic mice conditionally reduces oxidative DNA damage in vivo. FASEB Journal, 2003, 17, 1343-1345.	0.5	6
76	Reduced DNA oxidation in aged prostaglandin H synthase-1 knockout mice. Free Radical Biology and Medicine, 2011, 50, 550-556.	2.9	6
77	Human Prostaglandin H Synthase (hPHS)-1 and hPHS-2 in Amphetamine Analog Bioactivation, DNA Oxidation, and Cytotoxicity. Toxicological Sciences, 2011, 120, 154-162.	3.1	5
78	Resistance of CD-1 and ogg1 DNA Repair–Deficient Mice to Thalidomide and Hydrolysis Product Embryopathies in Embryo Culture. Toxicological Sciences, 2011, 122, 146-156.	3.1	5
79	DNA Damage and Repair and Epigenetic Modification in the Role of Oxoguanine Glycosylase 1 in Brain Development. Toxicological Sciences, 2022, 187, 93-111.	3.1	5
80	Expression of human oxoguanine glycosylase 1 or formamidopyrimidine glycosylase in human embryonic kidney 293 cells exacerbates methylmercury toxicity in vitro. Toxicology and Applied Pharmacology, 2013, 271, 41-48.	2.8	4
81	Impact of Oxidative Stress on Development. Oxidative Stress in Applied Basic Research and Clinical Practice, 2014, , 1-37.	0.4	4
82	New Zealand white rabbit progeny exposed in utero to methanol are resistant to skeletal anomalies reported for rodents, but exhibit a novel vertebral defect. Reproductive Toxicology, 2015, 58, 104-110.	2.9	4
83	A new target for thalidomide. Nature Chemical Biology, 2018, 14, 904-905.	8.0	3
84	Novel mechanisms in alcohol neurodevelopmental disorders via BRCA1 depletion and BRCA1-dependent NADPH oxidase regulation. Redox Biology, 2021, 48, 102148.	9.0	3
85	Sensitivity to methylmercury toxicity is enhanced in oxoguanine glycosylase 1 knockout murine embryonic fibroblasts and is dependent on cellular proliferation capacity. Toxicology and Applied Pharmacology, 2013, 270, 23-30.	2.8	2
86	Western Analysis of Breast Cancer 1 Protein (BRCA1). Methods in Molecular Biology, 2019, 1965, 351-374.	0.9	1
87	Sex- and OGG1-dependent reversal of in utero ethanol-initiated changes in postnatal behaviour by neonatal treatment with the histone deacetylase inhibitor trichostatin A (TSA) in oxoguanine glycosylase 1 (Ogg1) knockout mice. Toxicology Letters, 2022, 356, 121-131.	0.8	1
88	Response to comments by White and colleagues. Reproductive Toxicology, 2016, 66, 126-127.	2.9	0
89	Quantifying Activity for Repair of the DNA Lesion 8-Oxoguanine by Oxoguanine Glycosylase 1 (OGG1) in Mouse Adult and Fetal Brain Nuclear Extracts Using Biotin-Labeled DNA. Methods in Molecular Biology, 2019, 1965, 329-349.	0.9	0
90	Prostaglandin H synthase (PHS)â€1/2â€dependent oxidative DNA damage and cytotoxicity caused by neurotransmitters, their precursors and metabolites. FASEB Journal, 2007, 21, A814.	0.5	0

#	Article	IF	CITATIONS
91	Cellular models of altered base excision repair reveal a differential contribution of reactive oxygen speciesâ€induced 7,8â€dihydroâ€8â€oxoâ€2â€aêdeoxyguanosine to the cytotoxic mechanisms of platinum an drugs cisplatin and oxaliplatin. FASEB Journal, 2007, 21, A1191.	ticanscer	0
92	Oxoguanine glycosylase 1 (OGG1) protects cells from DNA doubleâ€strand break damage following methylmercury (MeHg) exposure. FASEB Journal, 2012, 26, .	0.5	0
93	Biochemical mechanisms of drug toxicity. , 2022, , 267-302.		0