Manuel Alejandro Fernandez-Rojo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3468098/publications.pdf

Version: 2024-02-01

MANUEL ALEJANDRO

#	Article	IF	CITATIONS
1	Growth Hormone Stops Excessive Inflammation After Partial Hepatectomy, Allowing Liver Regeneration and Survival Through Induction of H2â€Bl/HLAâ€G. Hepatology, 2021, 73, 759-775.	7.3	24
2	Reply:. Hepatology, 2021, 73, 1239-1239.	7.3	0
3	Impact of liver-specific GLUT8 silencing on fructose-induced inflammation and omega oxidation. IScience, 2021, 24, 102071.	4.1	13
4	ERK and mTORC1 Inhibitors Enhance the Anti-Cancer Capacity of the Octpep-1 Venom-Derived Peptide in Melanoma BRAF(V600E) Mutations. Toxins, 2021, 13, 146.	3.4	7
5	Extensive Variation in the Activities of Pseudocerastes and Eristicophis Viper Venoms Suggests Divergent Envenoming Strategies Are Used for Prey Capture. Toxins, 2021, 13, 112.	3.4	10
6	LXR stimulates a metabolic switch and reveals cholesterol homeostasis as a statin target in Tasmanian devil facial tumor disease. Cell Reports, 2021, 34, 108851.	6.4	5
7	Supersonic shear-wave elastography and APRI for the detection and staging of liver disease in pediatric cystic fibrosis. Journal of Cystic Fibrosis, 2020, 19, 449-454.	0.7	27
8	Unraveling the Role of Leptin in Liver Function and Its Relationship with Liver Diseases. International Journal of Molecular Sciences, 2020, 21, 9368.	4.1	48
9	Murine Precision-Cut Liver Slices as an Ex Vivo Model of Liver Biology. Journal of Visualized Experiments, 2020, , .	0.3	10
10	Gomesin peptides prevent proliferation and lead to the cell death of devil facial tumour disease cells. Cell Death Discovery, 2018, 4, 19.	4.7	15
11	MicroRNA Sequencing Identifies a Serum MicroRNA Panel, Which Combined With Aspartate Aminotransferase to Platelet Ratio Index Can Detect and Monitor Liver Disease in Pediatric Cystic Fibrosis. Hepatology, 2018, 68, 2301-2316.	7.3	17
12	Gomesin inhibits melanoma growth by manipulating key signaling cascades that control cell death and proliferation. Scientific Reports, 2018, 8, 11519.	3.3	37
13	The antiproliferative and apoptotic profile of gomesin against DFTD. Cell Death and Disease, 2018, 9, 833.	6.3	3
14	Taurocholate Induces Biliary Differentiation of Liver Progenitor Cells Causing Hepatic Stellate Cell Chemotaxis in the Ductular Reaction. American Journal of Pathology, 2017, 187, 2744-2757.	3.8	20
15	Filling the Gap on Caveolin-1 in Liver Carcinogenesis. Trends in Cancer, 2016, 2, 701-705.	7.4	0
16	Highâ€density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolinâ€1. British Journal of Pharmacology, 2016, 173, 741-751.	5.4	67
17	Caveolin-1 Function in Liver Physiology and Disease. Trends in Molecular Medicine, 2016, 22, 889-904.	6.7	76
18	The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. Journal of Cell Biology, 2015, 210, 833-849.	5.2	133

MANUEL ALEJANDRO

#	Article	IF	CITATIONS
19	Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. Journal of Cell Biology, 2014, 204, 777-792.	5.2	112
20	Cell-to-Cell Heterogeneity in Lipid Droplets Suggests a Mechanism to Reduce Lipotoxicity. Current Biology, 2013, 23, 1489-1496.	3.9	152
21	Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling. Cell Reports, 2013, 4, 238-247.	6.4	56
22	Caveolin-1 Plays a Critical Role in the Differentiation of Monocytes into Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, e117-25.	2.4	57
23	Caveolin-1 orchestrates the balance between glucose and lipid-dependent energy metabolism: Implications for liver regeneration. Hepatology, 2012, 55, 1574-1584.	7.3	82
24	Caveolin-1 Deficiency Leads to Increased Susceptibility to Cell Death and Fibrosis in White Adipose Tissue: Characterization of a Lipodystrophic Model. PLoS ONE, 2012, 7, e46242.	2.5	45
25	Spatiotemporal Regulation of Early Lipolytic Signaling in Adipocytes. Journal of Biological Chemistry, 2009, 284, 32097-32107.	3.4	34
26	Caveolin-1 Is Essential for Liver Regeneration. Science, 2006, 313, 1628-1632.	12.6	235
27	Aspirin-induced apoptosis in Jurkat cells is not mediated by peroxisome proliferator-activated receptor delta. Molecular and Cellular Biochemistry, 2004, 266, 57-63.	3.1	7