Adam G Yates

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3467962/publications.pdf

Version: 2024-02-01

48 papers

1,083

430874 18 h-index 434195 31 g-index

48 all docs 48 docs citations

48 times ranked

1450 citing authors

#	Article	IF	CITATIONS
1	Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 2019, 5, eaav0486.	10.3	133
2	Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management, $2011, 7, 187-197$.	2.9	113
3	The Biological Assessment and Rehabilitation of the World's Rivers: An Overview. Water (Switzerland), 2021, 13, 371.	2.7	88
4	Quantifying seasonal variation in total phosphorus and nitrogen from prairie streams in the Red River Basin, Manitoba Canada. Science of the Total Environment, 2017, 575, 649-659.	8.0	71
5	Effectiveness of best management practices in improving stream ecosystem quality. Hydrobiologia, 2007, 583, 331-344.	2.0	48
6	Covarying patterns of macroinvertebrate and fish assemblages along natural and human activity gradients: implications for bioassessment. Hydrobiologia, 2010, 637, 87-100.	2.0	44
7	Benthic invertebrate taxonomic and trait associations with land use in an intensively managed watershed: Implications for indicator identification. Ecological Indicators, 2018, 93, 1050-1059.	6.3	43
8	Improving the description of human activities potentially affecting rural stream ecosystems. Landscape Ecology, 2010, 25, 371-382.	4.2	36
9	Selecting objectively defined reference sites for stream bioassessment programs. Environmental Monitoring and Assessment, 2010, 170, 129-140.	2.7	32
10	Estimating nutrient production from human activities in subcatchments of the Red River, Manitoba. Journal of Great Lakes Research, 2012, 38, 106-114.	1.9	29
11	Bioassessment of freshwater ecosystems using the Reference Condition Approach: comparing established and new methods with common data sets. Freshwater Science, 2014, 33, 1204-1211.	1.8	27
12	Integrating stream bioassessment and landscape ecology as a tool for land use planning. Freshwater Biology, 2007, 52, 908-917.	2.4	25
13	Effects of landscape and history on diversification of a montane, streamâ€breeding amphibian. Journal of Biogeography, 2009, 36, 255-265.	3.0	25
14	The Stream and Its Altered Valley: Integrating Landscape Ecology into Environmental Assessments of Agro-Ecosystems. Environmental Monitoring and Assessment, 2006, 114, 257-271.	2.7	24
15	Buried streams: Uncovering a potential threat to aquatic ecosystems. Landscape and Urban Planning, 2013, 114, 37-41.	7.5	24
16	Sensitivity of structural and functional indicators depends on type and resolution of anthropogenic activities. Ecological Indicators, 2014, 45, 274-284.	6.3	24
17	Multiâ€scaled drivers of rural prairie stream metabolism along human activity gradients. Freshwater Biology, 2013, 58, 675-689.	2.4	22
18	Effects of Best Management Practice on Ecological Condition: Does Location Matter?. Environmental Management, 2016, 57, 1062-1076.	2.7	21

#	Article	IF	CITATIONS
19	Snowmelt and its role in the hydrologic and nutrient budgets of prairie streams. Water Science and Technology, 2011, 64, 1590-1596.	2.5	20
20	Effects of taxonomic group, spatial scale and descriptor on the relationship between human activity and stream biota. Ecological Indicators, 2011, 11, 759-771.	6.3	17
21	Developing metabolomics-based bioassessment: crayfish metabolome sensitivity to food and dissolved oxygen stress. Environmental Science and Pollution Research, 2018, 25, 36184-36193.	5.3	17
22	Patterns and drivers of stream benthic macroinvertebrate beta diversity in an agricultural landscape. Hydrobiologia, 2019, 837, 61-75.	2.0	16
23	SEASONALLY DRIVEN VARIATION IN SPATIAL RELATIONSHIPS BETWEEN AGRICULTURAL LAND USE AND INâ€5TREAM NUTRIENT CONCENTRATIONS. River Research and Applications, 2014, 30, 476-493.	1.7	15
24	Agricultural Best Management Practice Abundance and Location does not Influence Stream Ecosystem Function or Water Quality in the Summer Season. Water (Switzerland), 2015, 7, 6861-6876.	2.7	15
25	Crayfish tissue metabolomes effectively distinguish impacts of wastewater and agriculture in aquatic ecosystems. Science of the Total Environment, 2021, 760, 143322.	8.0	15
26	Hydrological variability affects particulate nitrogen and phosphorus in streams of the Northern Great Plains. Journal of Hydrology: Regional Studies, 2019, 21, 110-125.	2.4	13
27	Intra-annual variation of the association between agricultural best management practices and stream nutrient concentrations. Science of the Total Environment, 2017, 586, 1124-1134.	8.0	12
28	Global Patterns and Controls of Nutrient Immobilization on Decomposing Cellulose in Riverine Ecosystems. Global Biogeochemical Cycles, 2022, 36, .	4.9	12
29	Scale-specific land cover thresholds for conservation of stream invertebrate communities in agricultural landscapes. Landscape Ecology, 2018, 33, 2239-2252.	4.2	10
30	Land-use practices influence nutrient concentrations of southwestern Ontario streams. Canadian Water Resources Journal, 2018, 43, 2-17.	1.2	10
31	Evaluating diffuse and point source phosphorus inputs to streams in a cold climate region using a load apportionment model. Journal of Great Lakes Research, 2021, 47, 761-772.	1.9	10
32	Hierarchical variation in cellulose decomposition in least-disturbed reference streams: a multi-season study using the cotton strip assay. Landscape Ecology, 2019, 34, 2353-2369.	4.2	9
33	Variation in stream metabolism and benthic invertebrate composition along longitudinal profiles of two contrasting river systems. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 549-559.	1.4	8
34	Metabolomics for biomonitoring: an evaluation of the metabolome as an indicator of aquatic ecosystem health. Environmental Reviews, 0, , 1-10.	4.5	8
35	An ecological causal assessment of tributaries draining the Red River Valley, Manitoba. Journal of Great Lakes Research, 2021, 47, 773-787.	1.9	7
36	Episodic loadings of phosphorus influence growth and composition of benthic algae communities in artificial stream mesocosms. Water Research, 2020, 185, 116139.	11.3	6

#	Article	IF	CITATIONS
37	Establishing Cause–Effect Relationships in Multistressor Environments. , 2017, , 335-351.		5
38	Enhancing bioassessment approaches: development of a river services assessment framework. Freshwater Science, 2019, 38, 12-22.	1.8	4
39	Sources of nitrogen to stream food webs in tributaries of the Red River Valley, Manitoba. Journal of Great Lakes Research, 2021, 47, 751-760.	1.9	4
40	Spatial and temporal patterns in macronutrient concentrations and stoichiometry of tributaries draining the lower Great Lakes-St. Lawrence basin. Journal of Great Lakes Research, 2020, 46, 989-1000.	1.9	3
41	Fate of bioavailable nutrients released to a stream during episodic effluent releases from a municipal wastewater treatment lagoon. Environmental Sciences: Processes and Impacts, 2020, 22, 2374-2387.	3.5	3
42	Metabolic regimes of three mid-order streams in southern Ontario, Canada exposed to contrasting sources of nutrients. Hydrobiologia, 2020, 847, 1925-1942.	2.0	3
43	Interannual Variation of Benthic Macroinvertebrate Communities at Long-Term Monitoring Sites Impacted by Human Activities: Implications for Bioassessment. Diversity, 2019, 11, 167.	1.7	2
44	Spatio-temporal variation of benthic metabolism in a large, regulated river. Canadian Water Resources Journal, 2020, 45, 144-157.	1.2	2
45	Intensive agriculture alters the biomass size spectrum and body-mass of benthic insects:Âevidence from a reciprocal transfer experiment. Hydrobiologia, 2020, 847, 1221-1235.	2.0	2
46	Contribution of nitrogen sources to streams in mixed-use catchments varies seasonally in a cold temperate region. Science of the Total Environment, 2021, 764, 142824.	8.0	2
47	Nutrient enrichment effects are conditional on upstream nutrient concentrations: Implications for bioassessment in multi-use catchments. Ecological Indicators, 2021, 124, 107440.	6.3	2
48	Metabolomic Analysis of Hexagenid Mayflies Exposed to Sublethal Concentrations of Naphthenic Acid. Frontiers in Molecular Biosciences, 2021, 8, 669082.	3.5	2