Aicheng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3467868/publications.pdf Version: 2024-02-01

		19636	22808
209	14,436	61	112
papers	citations	h-index	g-index
212	212	212	17124
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design and mechanistic study of advanced cobalt-based nanostructured catalysts for electrochemical carbon dioxide reduction. Applied Catalysis B: Environmental, 2022, 301, 120761.	10.8	16
2	Biomass-derived amorphous carbon with localized active graphite defects for effective electrocatalytic N2 reduction. Applied Surface Science, 2022, 575, 151630.	3.1	10
3	Synthesis and electrochemical studies of WO ₃ â€based nanomaterials for environmental, energy and gas sensing applications. Electrochemical Science Advances, 2022, 2, e2100146.	1.2	6
4	Entrapping gold nanoparticles in membranes for simple-to-use enhanced fluorescence detection of proteins. Analytica Chimica Acta, 2022, 1195, 339443.	2.6	16
5	Effective microwave-hydrothermal reduction of graphene oxide for efficient energy storage. Journal of Energy Storage, 2022, 48, 103962.	3.9	9
6	Recent advances in catalyst design for the electrochemical and photoelectrochemical conversion of methane to value-added products. Electrochemistry Communications, 2022, 135, 107220.	2.3	13
7	Determination of Drugs in Clinical Trials: Current Status and Outlook. Sensors, 2022, 22, 1592.	2.1	5
8	Methods for Enhanced Fluorescence Detection of Proteins by using Entrapped Gold Nanoparticles in Membranes. Current Protocols, 2022, 2, e404.	1.3	3
9	Electrochemical Sensing of Vanillin Based on Fluorine-Doped Reduced Graphene Oxide Decorated with Gold Nanoparticles. Foods, 2022, 11, 1448.	1.9	14
10	Tailoring the Mn–O Covalency and Surface Oxygen Defects of Ferrite Nanostructures for Peroxymonosulfate Activation and Norfloxacin Degradation. ACS Applied Nano Materials, 2022, 5, 8921-8929.	2.4	6
11	Tailoring trimetallic CoNiFe oxide nanostructured catalysts for the efficient electrochemical conversion of methane to methanol. Journal of Materials Chemistry A, 2022, 10, 15012-15025.	5.2	4
12	Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosensors and Bioelectronics, 2021, 175, 112836.	5.3	200
13	Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochimica Acta, 2021, 368, 137612.	2.6	29
14	Copper decorated with nanoporous gold by galvanic displacement acts as an efficient electrocatalyst for the electrochemical reduction of CO ₂ . Nanoscale, 2021, 13, 1155-1163.	2.8	15
15	An ultrasensitive electrochemical sensor for the detection of acetaminophen <i>via</i> a three-dimensional hierarchical nanoporous gold wire electrode. Analyst, The, 2021, 146, 4525-4534.	1.7	5
16	Comparison of Pt and IrO2-Ta2O5/Ti as a counter electrode in acidic media. Electrochemistry Communications, 2021, 124, 106946.	2.3	10
17	Graphene Oxide-Based Nanomaterials for the Electrochemical Sensing of Isoniazid. ACS Applied Nano Materials, 2021, 4, 3696-3706.	2.4	41
18	Simultaneous electrochemical detection of guanine and adenine using reduced graphene oxide decorated with AuPt nanoclusters. Mikrochimica Acta, 2021, 188, 276.	2.5	18

#	Article	IF	CITATIONS
19	Double Active Sites in Co–N <i>_x</i> –C@Co Electrocatalysts for Simultaneous Production of Hydrogen and Carbon Monoxide. ACS Applied Materials & Interfaces, 2021, 13, 38256-38265.	4.0	18
20	Electrochemical Detection of Nitrite Based on Co ₃ O ₄ -Au Nanocomposites for Food Quality Control. Journal of the Electrochemical Society, 2021, 168, 107505.	1.3	13
21	Design of bimetallic nickel-iron quantum dots with tunable compositions for enhanced electrochemical water splitting. Electrochimica Acta, 2021, 392, 139016.	2.6	8
22	Design and Electrochemical Study of Three-Dimensional Expanded Graphite and Reduced Graphene Oxide Nanocomposites Decorated with Pd Nanoparticles for Hydrogen Storage. Journal of Physical Chemistry C, 2021, 125, 22970-22981.	1.5	8
23	Solar-driven bio-electro-chemical system for synergistic hydrogen evolution and pollutant elimination simultaneously over defect-rich CoN–MoS2/biomass nanosheets. Journal of Power Sources, 2020, 478, 228755.	4.0	9
24	Novel three-dimensional N-doped interconnected reduced graphene oxide with superb capacitance for energy storage. Journal of Electroanalytical Chemistry, 2020, 875, 113911.	1.9	20
25	Significant enhancement of the electrochemical hydrogen uptake of reduced graphene oxide via boron-doping and decoration with Pd nanoparticles. International Journal of Hydrogen Energy, 2020, 45, 28951-28963.	3.8	20
26	Reprint of "Electrochemical oxidation of lignin at electrochemically reduced TiO2 nanotubes". Journal of Electroanalytical Chemistry, 2020, 872, 114528.	1.9	6
27	In Situ Enzymatic Generation of Gold Nanoparticles for Nanozymatic Label-free Detection of Acid Phosphatase. ACS Applied Nano Materials, 2020, 3, 9462-9469.	2.4	19
28	Electrochemical oxidation of lignin at electrochemically reduced TiO2 nanotubes. Journal of Electroanalytical Chemistry, 2020, 863, 114049.	1.9	22
29	Patterning of BiVO ₄ Surfaces and Monitoring of Localized Catalytic Activity Using Scanning Photoelectrochemical Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 18065-18073.	4.0	11
30	Unique hollow Ni–Fe@MoS ₂ nanocubes with boosted electrocatalytic activity for N ₂ reduction to NH ₃ . Journal of Materials Chemistry A, 2020, 8, 7339-7349.	5.2	60
31	Quantitative structure–property relationship of the photoelectrochemical oxidation of phenolic pollutants at modified nanoporous titanium oxide using supervised machine learning. Physical Chemistry Chemical Physics, 2020, 22, 8878-8888.	1.3	10
32	Synthesis and Electrochemical Study of Three-Dimensional Graphene-Based Nanomaterials for Energy Applications. Nanomaterials, 2020, 10, 1295.	1.9	23
33	Efficient dye removal and separation based on graphene oxide nanomaterials. New Journal of Chemistry, 2020, 44, 4519-4528.	1.4	68
34	Highly boosted gas diffusion for enhanced electrocatalytic reduction of N ₂ to NH ₃ on 3D hollow Co–MoS ₂ nanostructures. Nanoscale, 2020, 12, 6029-6036.	2.8	30
35	Graphene-Oxide-Based Electrochemical Sensors for the Sensitive Detection of Pharmaceutical Drug Naproxen. Sensors, 2020, 20, 1252.	2.1	69
36	Review—Recent Advances in the Development of Nanoporous Au for Sensing Applications. Journal of the Electrochemical Society, 2020, 167, 037532.	1.3	41

#	Article	IF	CITATIONS
37	Recent advances in nanomaterial-based solid-state hydrogen storage. Materials Today Advances, 2020, 6, 100022.	2.5	123
38	Effect of Reduced Graphene Oxide on the Ta ₂ O ₅ -IrO ₂ Electrocatalyst for Water Splitting. Journal of the Electrochemical Society, 2020, 167, 146506.	1.3	13
39	Sensitive Electrochemical Analysis of Hydroxyproline in Achilles Tendon Collagen and Human Urine. Journal of the Electrochemical Society, 2020, 167, 167511.	1.3	4
40	Thermal-assisted synthesis of unique Cu nanodendrites for the efficient electrochemical reduction of CO2. Applied Catalysis B: Environmental, 2019, 259, 118096.	10.8	35
41	Electrochemical Reduction of Carbon Dioxide on Au Nanoparticles: An in Situ FTIR Study. Journal of Physical Chemistry C, 2019, 123, 23898-23906.	1.5	46
42	Identification of Catalytic Active Sites in Nitrogen-Doped Carbon for Electrocatalytic Dechlorination of 1,2-Dichloroethane. ACS Catalysis, 2019, 9, 10931-10939.	5.5	46
43	Recent advances in nanomaterial-based electrochemical sensing of nitric oxide and nitrite for biomedical and food research. Current Opinion in Electrochemistry, 2019, 16, 127-133.	2.5	34
44	Sulfur vacancy-rich N-doped MoS ₂ nanoflowers for highly boosting electrocatalytic N ₂ fixation to NH ₃ under ambient conditions. Chemical Communications, 2019, 55, 7386-7389.	2.2	111
45	Sensitive Electrochemical Detection of Caffeic Acid in Wine Based on Fluorine-Doped Graphene Oxide. Sensors, 2019, 19, 1604.	2.1	48
46	Synthesis and Electrochemical Study of Mesoporous Nickel-Cobalt Oxides for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2019, 11, 18295-18304.	4.0	28
47	Fluorescent Fe ₃ O ₄ Quantum Dots for H ₂ O ₂ Detection. ACS Applied Nano Materials, 2019, 2, 2076-2085.	2.4	75
48	Green Synthesis and Electrochemical Study of Cobalt/Graphene Quantum Dots for Efficient Water Splitting. Journal of Physical Chemistry C, 2019, 123, 9183-9191.	1.5	30
49	Sensitive electrochemical detection of Hg(II) via a FeOOH modified nanoporous gold microelectrode. Sensors and Actuators B: Chemical, 2019, 287, 517-525.	4.0	50
50	Shape-controlled synthesis of Co ₃ O ₄ for enhanced electrocatalysis of the oxygen evolution reaction. Chemical Communications, 2019, 55, 3626-3629.	2.2	75
51	Rational Design of Peroxymonosulfate Activation and Photoinduced Catalysis Tandem Systems for Artificial Conversion of Solar Light to Chemical Energy. ACS Omega, 2019, 4, 4113-4128.	1.6	11
52	Boosting interfacial charge transfer and electricity generation for levofloxacin elimination in a self-driven bio-driven photoelectrocatalytic system. Nanoscale, 2019, 11, 22042-22053.	2.8	15
53	Nano-cement composite with graphene oxide produced from epigenetic graphite deposit. Composites Part B: Engineering, 2019, 159, 248-258.	5.9	66
54	Fabrication and electrochemical study of ruthenium-ruthenium oxide/activated carbon nanocomposites for enhanced energy storage. Journal of Alloys and Compounds, 2018, 751, 138-147.	2.8	27

#	Article	IF	CITATIONS
55	Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode. Journal of Electroanalytical Chemistry, 2018, 819, 524-532.	1.9	49
56	Significant Enhancement of the Photoelectrochemical Activity of CuWO ₄ by using a Cobalt Phosphate Nanoscale Thin Film. ChemElectroChem, 2018, 5, 523-530.	1.7	25
57	Relationships Between Crystal, Internal Microstructures, and Physicochemical Properties of Copper–Zinc–Iron Multinary Spinel Hierarchical Nano-microspheres. ACS Applied Materials & Interfaces, 2018, 10, 35919-35931.	4.0	18
58	High-Temperature Hydrogen Gas Sensor Based on Three-Dimensional Hierarchical-Nanostructured Nickel–Cobalt Oxide. ACS Applied Nano Materials, 2018, 1, 6005-6014.	2.4	49
59	Fabrication of MoS2@g-C3N4 core-shell nanospheres for visible light photocatalytic degradation of toluene. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	17
60	Nanomaterials-Based Electrochemical Sensors for In Vitro and In Vivo Analyses of Neurotransmitters. Applied Sciences (Switzerland), 2018, 8, 1504.	1.3	38
61	Efficient bacterial disinfection based on an integrated nanoporous titanium dioxide and ruthenium oxide bifunctional approach. Journal of Hazardous Materials, 2018, 356, 73-81.	6.5	17
62	Enhanced catalytic activity of nanoporous Au for the efficient electrochemical reduction of carbon dioxide. Applied Catalysis B: Environmental, 2018, 236, 483-489.	10.8	57
63	Electrochemical oxidation of 4-chlorophenol for wastewater treatment using highly active UV treated TiO2 nanotubes. Chemosphere, 2018, 209, 182-190.	4.2	24
64	Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. Analyst, The, 2018, 143, 4537-4554.	1.7	124
65	Effect of room temperature ionic liquids on the electrochemical dissolution and deposition of nickel in the Watts solution. Journal of Applied Electrochemistry, 2018, 48, 901-910.	1.5	2
66	Facile one-pot synthesis of fluorinated graphene oxide for electrochemical sensing of heavy metal ions. Electrochemistry Communications, 2017, 76, 42-46.	2.3	106
67	Facile Synthesis of a Carbon Nitride/Reduced Graphene Oxide/Nickel Hydroxide Nanocomposite for Oxygen Reduction in Alkaline Media. ChemElectroChem, 2017, 4, 997-1001.	1.7	6
68	Significant enhancement of electrosorption of hydrogen into palladium via a facile annealing process. International Journal of Hydrogen Energy, 2017, 42, 12375-12383.	3.8	5
69	From graphite to interconnected reduced graphene oxide: one-pot synthesis and supercapacitor application. Chemical Communications, 2017, 53, 7828-7831.	2.2	30
70	Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide. Scientific Reports, 2017, 7, 3184.	1.6	64
71	A high-performance enzyme entrapment platform facilitated by a cationic polymer for the efficient electrochemical sensing of ethanol. Analyst, The, 2017, 142, 2595-2602.	1.7	18
72	Au nanoparticle incorporated Co(OH) 2 hybrid thin film with high electrocatalytic activity and stability for overall water splitting. Journal of Electroanalytical Chemistry, 2017, 794, 28-35.	1.9	36

#	Article	IF	CITATIONS
73	Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell. Bioelectrochemistry, 2017, 118, 83-90.	2.4	18
74	Facile synthesis of mesoporous carbon nitride and titanium dioxide nanocomposites with enhanced visible light photocatalytic activity. New Journal of Chemistry, 2017, 41, 10542-10549.	1.4	16
75	Superb Pseudocapacitance Based on Three-Dimensional Porous Nickel Oxide Modified with Iridium Oxide. Journal of Physical Chemistry C, 2017, 121, 27274-27284.	1.5	15
76	Sensitive Electrochemical Detection of Nitric Oxide Release from Cardiac and Cancer Cells via a Hierarchical Nanoporous Gold Microelectrode. Analytical Chemistry, 2017, 89, 8036-8043.	3.2	53
77	Electrochemical and FTIR spectroscopic study of CO 2 reduction at a nanostructured Cu/reduced graphene oxide thin film. Electrochemistry Communications, 2017, 82, 16-20.	2.3	31
78	Design and Electrochemical Study of Platinum-Based Nanomaterials for Sensitive Detection of Nitric Oxide in Biomedical Applications. Nanomaterials, 2016, 6, 211.	1.9	36
79	Electrochemical Behavior of Gold–Silver Alloy Nanoparticles. ChemElectroChem, 2016, 3, 1039-1043.	1.7	24
80	Photoelectrochemical degradation of acetaminophen and valacyclovir using nanoporous titanium dioxide. Chinese Journal of Catalysis, 2016, 37, 1062-1069.	6.9	22
81	Sensitive electrochemical detection of nitric oxide based on AuPt and reduced graphene oxide nanocomposites. Analyst, The, 2016, 141, 4074-4083.	1.7	52
82	Simultaneous and sensitive detection of acetaminophen and valacyclovir based on two dimensional graphene nanosheets. Journal of Electroanalytical Chemistry, 2016, 780, 241-248.	1.9	40
83	Facile and Controllable Modification of 3D In ₂ O ₃ Microflowers with In ₂ S ₃ Nanoflakes for Efficient Photocatalytic Degradation of Gaseous <i>ortho</i> -Dichlorobenzene. Journal of Physical Chemistry C, 2016, 120, 19113-19123.	1.5	99
84	Enhanced electrochemical sensing of nitric oxide using a nanocomposite consisting of platinum-tungsten nanoparticles, reduced graphene oxide and an ionic liquid. Mikrochimica Acta, 2016, 183, 2879-2887.	2.5	38
85	Photoassisted Deposition of Palladium Nanoparticles on Carbon Nitride for Efficient Oxygen Reduction. Journal of Physical Chemistry C, 2016, 120, 14467-14473.	1.5	42
86	Palladium based nanomaterials for enhanced hydrogen spillover and storage. Materials Today, 2016, 19, 100-108.	8.3	155
87	Nanostructured materials for water splitting - state of the art and future needs: A mini-review. Electrochemistry Communications, 2016, 63, 10-17.	2.3	126
88	Novel cobalt quantum dot/graphene nanocomposites as highly efficient electrocatalysts for water splitting. Nanoscale, 2016, 8, 1485-1492.	2.8	62
89	Simultaneous removal of nitrate and hardness ions from groundwater using electrodeionization. Separation and Purification Technology, 2016, 164, 107-113.	3.9	71
90	High-performance supercapacitor based on tantalum iridium oxides supported on tungsten oxide nanoplatelets. Electrochemistry Communications, 2016, 67, 1-5.	2.3	41

#	Article	IF	CITATIONS
91	Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO 2 electrodes. Sensors and Actuators B: Chemical, 2016, 223, 664-670.	4.0	33
92	Modification of TiO ₂ Nanotubes with PtRu/Graphene Nanocomposites for Enhanced Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 2041-2047.	1.7	16
93	Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds. Sensors, 2015, 15, 22490-22508.	2.1	130
94	Significant Enhancement of the Photoelectrochemical Activity of Nanoporous TiO 2 for Environmental Applications. Electrochimica Acta, 2015, 173, 728-735.	2.6	22
95	Simultaneous synthesis of gold nanoparticle/graphene nanocomposite for enhanced oxygen reduction reaction. Journal of Power Sources, 2015, 274, 928-936.	4.0	80
96	Fabrication and photoelectrochemical study of WO3-based bifunctional electrodes for environmental applications. Applied Catalysis B: Environmental, 2015, 176-177, 464-471.	10.8	22
97	Electrochemical Sensor Based on Carbon Nanotubes for the Simultaneous Detection of Phenolic Pollutants. Electroanalysis, 2015, 27, 902-909.	1.5	73
98	Palladium-Based Nanomaterials: Synthesis and Electrochemical Applications. Chemical Reviews, 2015, 115, 11999-12044.	23.0	649
99	One-step synthesis of Pd and reduced graphene oxide nanocomposites for enhanced hydrogen sorption and storage. Electrochemistry Communications, 2015, 60, 148-152.	2.3	30
100	Synthesis and electrochemical study of Cd@Pd core/shell nanomaterials for hydrogen sorption and storage. International Journal of Hydrogen Energy, 2015, 40, 16365-16374.	3.8	22
101	Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosensors and Bioelectronics, 2015, 66, 474-480.	5.3	143
102	Synthesis and photoelectrochemical studies of N, Zr co-doped mesoporous titanium dioxide. Journal of Electroanalytical Chemistry, 2015, 736, 93-100.	1.9	19
103	Sensitive Detection of Acetaminophen with Graphene-Based Electrochemical Sensor. Electrochimica Acta, 2015, 162, 198-204.	2.6	117
104	Synthesis and Comparative Study of Nanoporous Palladium-Based Bimetallic Catalysts for Formic Acid Oxidation. Journal of Physical Chemistry C, 2014, 118, 29903-29910.	1.5	56
105	Nanomaterials-based electrochemical detection of chemical contaminants. RSC Advances, 2014, 4, 63741-63760.	1.7	132
106	Electrodeionization: Principles, Strategies and Applications. Electrochimica Acta, 2014, 132, 583-597.	2.6	171
107	Direct growth and photo-electrochemical study of WO3 nanostructured materials. Electrochemistry Communications, 2014, 43, 13-17.	2.3	27
108	Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst. Fuel, 2014, 115, 101-108.	3.4	234

#	Article	IF	CITATIONS
109	Integrated lignin-mediated adsorption-release process and electrochemical reduction for the removal of trace Cr(<scp>vi</scp>). RSC Advances, 2014, 4, 27843-27849.	1.7	43
110	Fabrication and electrochemical study of carbon modified TiO2 nanowires. Electrochemistry Communications, 2014, 49, 25-29.	2.3	6
111	Sensitive and selective electrochemical detection of chromium(<scp>vi</scp>) based on gold nanoparticle-decorated titania nanotube arrays. Analyst, The, 2014, 139, 235-241.	1.7	153
112	Separation and recovery of Cr(III) and Cr(VI) using electrodeionization as an efficient approach. Separation and Purification Technology, 2014, 137, 86-93.	3.9	44
113	Electrocatalysis and photoelectrochemistry based on functional nanomaterials. Canadian Journal of Chemistry, 2014, 92, 581-597.	0.6	17
114	Electrocatalytic Enhancement of Salicylic Acid Oxidation at Electrochemically Reduced TiO ₂ Nanotubes. ACS Catalysis, 2014, 4, 2616-2622.	5.5	60
115	Facile synthesis of porous microspheres composed of TiO2 nanorods with high photocatalytic activity for hydrogen production. Applied Catalysis B: Environmental, 2014, 148-149, 281-287.	10.8	60
116	Synthesis and electrochemical study of PtPd nanodendrites. Journal of Electroanalytical Chemistry, 2013, 688, 151-157.	1.9	19
117	Carbon nanotube based electrochemical sensor for the sensitive detection of valacyclovir. Faraday Discussions, 2013, 164, 135.	1.6	31
118	Efficient extraction of lignin from black liquor via a novel membrane-assisted electrochemical approach. Electrochimica Acta, 2013, 107, 611-618.	2.6	45
119	Functionalization of TiO2 nanotubes with palladium nanoparticles for hydrogen sorption and storage. International Journal of Hydrogen Energy, 2013, 38, 14002-14009.	3.8	24
120	Environmentally benign NiAlCe-hydrotalcite for efficient synthesis of benzoin ethyl ether. Environmental Chemistry Letters, 2013, 11, 171-175.	8.3	4
121	Synthesis and Electrochemical Study of Pd-Based Trimetallic Nanoparticles for Enhanced Hydrogen Storage. Journal of Physical Chemistry C, 2013, 117, 20456-20464.	1.5	24
122	Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater. Separation and Purification Technology, 2013, 105, 55-62.	3.9	114
123	Synthesis and electrochemical study of nanoporous palladium–cadmium networks for non-enzymatic glucose detection. Electrochimica Acta, 2013, 112, 927-932.	2.6	28
124	Electrochemical determination of methylglyoxal as a biomarker in humanplasma. Biosensors and Bioelectronics, 2013, 42, 349-354.	5.3	33
125	Nanomaterials based electrochemical sensors for biomedical applications. Chemical Society Reviews, 2013, 42, 5425.	18.7	768
126	One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel. Catalysis Communications, 2013, 34, 58-63.	1.6	130

#	Article	IF	CITATIONS
127	Electrochemical sensing and biosensing based on square wave voltammetry. Analytical Methods, 2013, 5, 2158.	1.3	154
128	A novel nanoporous α-C3N4 photocatalyst with superior high visible light activity. Applied Catalysis B: Environmental, 2013, 142-143, 590-597.	10.8	57
129	Synthesis of Gold-Platinum Nanomaterials Using Bromide Anion Exchange-Synergistic Electroactivity toward CO and Glucose Oxidation. Journal of the Electrochemical Society, 2012, 159, H828-H833.	1.3	45
130	Unique Electrochemical Catalytic Behavior of Pt Nanoparticles Deposited on TiO ₂ Nanotubes. ACS Catalysis, 2012, 2, 425-432.	5.5	85
131	Electrocatalytic Activity of PtAu Nanoparticles Deposited on TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2012, 116, 3298-3304.	1.5	52
132	Significant enhancement in the photocatalytic activity of N, W co-doped TiO ₂ nanomaterials for promising environmental applications. Nanotechnology, 2012, 23, 475706.	1.3	47
133	Quantitative Structure–Reactivity Study of Electrochemical Oxidation of Phenolic Compounds at the SnO2–Based Electrode. Journal of Physical Chemistry A, 2012, 116, 2927-2934.	1.1	19
134	Voltammetric detection of the α-dicarbonyl compound: Methylglyoxal as a flavoring agent in wine and beer. Analytica Chimica Acta, 2012, 751, 66-70.	2.6	40
135	Novel electrochemical approach for the monitoring of biodegradation of phenolic pollutants and determination of enzyme activity. Electrochemistry Communications, 2012, 25, 79-82.	2.3	16
136	Photoelectrochemical properties of tungsten trioxide thin film electrodes prepared from facet-controlled rectangular platelets. Journal of Solid State Electrochemistry, 2012, 16, 1965-1973.	1.2	35
137	Synthesis of mesoporous nitrogen–tungsten co-doped TiO2 photocatalysts with high visible light activity. Applied Catalysis B: Environmental, 2012, 111-112, 38-45.	10.8	92
138	Facile electrochemical approach for the effective detection of guanine. Electrochemistry Communications, 2012, 20, 29-32.	2.3	21
139	Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays. Electrochimica Acta, 2012, 60, 147-153.	2.6	91
140	Functionalization of carbon buckypaper for the sensitive determination of hydrogen peroxide in human urine. Biosensors and Bioelectronics, 2012, 35, 302-307.	5.3	57
141	Synthesis of CdS quantum-dot sensitized TiO2 nanowires with high photocatalytic activity for water splitting. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 233, 65-71.	2.0	39
142	Interaction of carbon monoxide with small metal clusters: a DFT, electrochemical, and FTIR study. Canadian Journal of Chemistry, 2011, 89, 1445-1456.	0.6	6
143	Highly sensitive amperometric H2O2 biosensor based on hemoglobin modified TiO2 nanotubes. Journal of Electroanalytical Chemistry, 2011, 662, 64-69.	1.9	38
144	Significant enhancement of the photoelectrochemical activity of TiO2 nanotubes. Electrochemistry Communications, 2011, 13, 1186-1189.	2.3	17

#	Article	IF	CITATIONS
145	Mediator-free electrochemical biosensor based on buckypaper with enhanced stability and sensitivity for glucose detection. Biosensors and Bioelectronics, 2011, 30, 287-293.	5.3	28
146	Facile Preparation of Platelike Tungsten Oxide Thin Film Electrodes with High Photoelectrode Activity. ACS Applied Materials & Interfaces, 2011, 3, 4047-4052.	4.0	75
147	The role of palladium in a hydrogen economy. Materials Today, 2011, 14, 282-289.	8.3	421
148	Determination of Chemical Oxygen Demand Based on Novel Photoelectroâ€bifunctional Electrodes. Electroanalysis, 2011, 23, 1267-1275.	1.5	25
149	High-performance electrochemical biosensor for the detection of total cholesterol. Biosensors and Bioelectronics, 2011, 26, 4508-4513.	5.3	101
150	Synthesis and electrochemical study of TiO2-supported PdAu nanoparticles. Electrochemistry Communications, 2011, 13, 370-373.	2.3	29
151	Synthesis and electrochemical FTIR study of Pd-based nanostructured catalysts. Proceedings of SPIE, 2011, , .	0.8	0
152	Highly Active PdPt Catalysts for the Electrochemical Reduction of H2O2. Journal of the Electrochemical Society, 2011, 158, B434.	1.3	34
153	Efficacy of Pt-modified TiO(2) nanoparticles in cardiac cells. Experimental and Clinical Cardiology, 2011, 16, 6-10.	1.3	6
154	Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications. Chemical Reviews, 2010, 110, 3767-3804.	23.0	1,260
155	Enhanced electrochemical treatment of phenolic pollutants by an effective adsorption and release process. Electrochimica Acta, 2010, 55, 5367-5374.	2.6	31
156	A facile approach to synthesize N and B co-doped TiO2 nanomaterials with superior visible-light response. Materials Letters, 2010, 64, 1728-1731.	1.3	27
157	Abrasive Stripping Voltammetric Studies of Lignin and Lignin Model Compounds. Electroanalysis, 2010, 22, 1037-1044.	1.5	16
158	Singleâ€wavelength fiber laser for localized temperature monitoring. Microwave and Optical Technology Letters, 2010, 52, 1941-1946.	0.9	2
159	Electrochemical oxidation of lignin at IrO2-based oxide electrodes. Journal of Electroanalytical Chemistry, 2010, 649, 9-15.	1.9	138
160	A novel approach for lignin modification and degradation. Electrochemistry Communications, 2010, 12, 527-530.	2.3	105
161	Direct growth of nanoporous Au and its application in electrochemical biosensing. Biosensors and Bioelectronics, 2010, 25, 2458-2463.	5.3	78
162	Synthesis and electrochemical study of nanoporous Pd–Ag alloys for hydrogen sorption. Electrochimica Acta, 2010, 56, 61-67.	2.6	31

#	Article	IF	CITATIONS
163	One-step synthesis of N- and F-codoped mesoporous TiO ₂ photocatalysts with high visible light activity. Nanotechnology, 2010, 21, 085701.	1.3	45
164	Hydrogen Electrosorption into Pdâ^'Cd Nanostructures. Langmuir, 2010, 26, 7632-7637.	1.6	39
165	High-Performance Pd-Based Hydrogen Spillover Catalysts for Hydrogen Storage. Journal of Physical Chemistry C, 2010, 114, 19875-19882.	1.5	84
166	Abrasive Stripping Voltammetry in Room Temperature Ionic Liquids. Electroanalysis, 2009, 21, 29-35.	1.5	17
167	High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube arrays. Journal of Electroanalytical Chemistry, 2009, 627, 76-81.	1.9	75
168	Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochimica Acta, 2009, 54, 1491-1498.	2.6	151
169	Photoelectrochemical oxidation of salicylic acid and salicylaldehyde on titanium dioxide nanotube arrays. Electrochimica Acta, 2009, 54, 3799-3805.	2.6	64
170	Synthesis and electrochemical study of novel Pt-decorated Ti nanowires. Electrochemistry Communications, 2009, 11, 736-739.	2.3	11
171	Glucose biosensing based on the highly efficient immobilization of glucose oxidase on a Prussian blue modified nanostructured Au surface. Electrochemistry Communications, 2009, 11, 2048-2051.	2.3	48
172	A New Approach to Wastewater Remediation Based on Bifunctional Electrodes. Environmental Science & Technology, 2009, 43, 5100-5105.	4.6	56
173	Facile Synthesis of Pdâ^'Cd Nanostructures with High Capacity for Hydrogen Storage. Journal of the American Chemical Society, 2009, 131, 6930-6931.	6.6	99
174	Facile Synthesis and Electrochemical Properties of Intermetallic PtPb Nanodendrites. Chemistry of Materials, 2009, 21, 1716-1724.	3.2	62
175	Kinetic Study of the Electrochemical Oxidation of Salicylic Acid and Salicylaldehyde Using UV/vis Spectroscopy and Multivariate Calibration. Journal of Physical Chemistry A, 2009, 113, 9348-9353.	1.1	30
176	A novel amperometric biosensor for the detection of nitrophenol. Talanta, 2009, 79, 97-102.	2.9	79
177	Oligothiophenes substituted with the thionitrile group: synthesis, characterization, and thin-film formation on gold substrates. Journal of Materials Chemistry, 2009, 19, 8162.	6.7	8
178	A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosensors and Bioelectronics, 2008, 24, 566-571.	5.3	240
179	Activity of a novel titanium-supported bimetallic PtSn/Ti electrode for electrocatalytic oxidation of formic acid and methanol. Journal of Applied Electrochemistry, 2008, 38, 695-701.	1.5	43
180	Impedance Study of GaN and InGaN Semiconductor Anion Selective Electrodes. Electroanalysis, 2008, 20, 789-796.	1.5	7

#	Article	IF	CITATIONS
181	Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195, 47-53.	2.0	59
182	Electroactivity of titanium-supported nanoporous Pd–Pt catalysts towards formic acid oxidation. Journal of Electroanalytical Chemistry, 2008, 619-620, 197-205.	1.9	65
183	Amperometric glucose sensor based on platinum–iridium nanomaterials. Electrochemistry Communications, 2008, 10, 1438-1441.	2.3	131
184	Synthesis and electrochemical study of Pt-based nanoporous materials. Electrochimica Acta, 2008, 53, 6944-6952.	2.6	85
185	Growth and characterization of free-standing single crystalline tin and tin oxide nanobelts. Materials Letters, 2008, 62, 1969-1972.	1.3	3
186	Synthesis of F-Doped Flower-like TiO ₂ Nanostructures with High Photoelectrochemical Activity. Langmuir, 2008, 24, 3503-3509.	1.6	282
187	Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks. Analytical Chemistry, 2008, 80, 997-1004.	3.2	496
188	Direct growth of novel alloyed PtAu nanodendrites. Chemical Communications, 2008, , 5010.	2.2	54
189	Kinetics of Photoelectrocatalytic Degradation of Nitrophenols on Nanostructured TiO2Electrodes. Journal of Physical Chemistry C, 2008, 112, 825-831.	1.5	91
190	Electrocatalytic Activity of Nanoporous Pt–Ir Materials toward Methanol Oxidation and Oxygen Reduction. Journal of the Electrochemical Society, 2008, 155, K5.	1.3	55
191	Synthesis and characterization of ruthenium-decorated nanoporous platinum materials. Nanotechnology, 2007, 18, 305605.	1.3	14
192	Evaluation of GaN and In _{0.2} Ga _{0.8} N Semiconductors as Potentiometric Anion Selective Electrodes. Electroanalysis, 2007, 19, 1799-1806.	1.5	4
193	Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics. Electrochimica Acta, 2007, 52, 6517-6524.	2.6	47
194	Titanium-supported nanoporous bimetallic Pt–Ir electrocatalysts for formic acid oxidation. Electrochemistry Communications, 2007, 9, 1513-1518.	2.3	57
195	Synthesis and Characterization of Carbon-Doped TiO ₂ Nanostructures with Enhanced Visible Light Response. Chemistry of Materials, 2007, 19, 4530-4537.	3.2	272
196	Oscillatory instabilities during the electrochemical oxidation of sulfide on a Pt electrode. Journal of Electroanalytical Chemistry, 2006, 588, 314-323.	1.9	25
197	Specific binding of glycoproteins with poly(aniline boronic acid) thin film. Journal of Electroanalytical Chemistry, 2006, 591, 210-216.	1.9	50
198	Effect of concentration and temperature on electrochemical oscillations during sulfide oxidation on Ti/Ta2O5–IrO2 electrodes. Electrochimica Acta, 2005, 50, 2203-2212.	2.6	48

#	Article	IF	CITATIONS
199	Phenylboronic acid self-assembled layer on glassy carbon electrode for recognition of glycoprotein peroxidase. Electrochemistry Communications, 2005, 7, 1232-1236.	2.3	55
200	Tunable growth of TiO2nanostructures on Ti substrates. Nanotechnology, 2005, 16, 2389-2395.	1.3	62
201	Coadsorption of Horseradish Peroxidase with Thionine on TiO2Nanotubes for Biosensing. Langmuir, 2005, 21, 8409-8413.	1.6	287
202	Fabrication and electrochemical properties of novel nanoporous platinum network electrodes. Chemical Communications, 2004, , 2872.	2.2	73
203	Super-hydrophobic tin oxide nanoflowers. Chemical Communications, 2004, , 1964.	2.2	155
204	Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone. Journal of Materials Chemistry, 2004, 14, 2542.	6.7	121
205	Potential Oscillations during the Electrocatalytic Oxidation of Sulfide on a Microstructured Ti/Ta2O5-IrO2 Electrode. Journal of Physical Chemistry B, 2004, 108, 2245-2251.	1.2	60
206	Effect of the Iridium Oxide Thin Film on the Electrochemical Activity of Platinum Nanoparticles. Langmuir, 2004, 20, 9695-9702.	1.6	119
207	Influence of a Nanoscale Gold Thin Layer on Ti/SnO2-Sb2O5Electrodes. Journal of Physical Chemistry B, 2003, 107, 13341-13348.	1.2	76
208	Electrochemical and Spectroscopic Studies of Hydroxide Adsorption at the Au(111) Electrode. Journal of Physical Chemistry B, 1999, 103, 682-691.	1.2	164
209	Electrochemical and Fourier Transform Infrared Spectroscopy Studies of Benzonitrile Adsorption at the Au(111) Electrode. Langmuir, 1997, 13, 4737-4747.	1.6	29