Ji Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3467307/publications.pdf

Version: 2024-02-01

236925 330143 1,869 91 25 37 citations h-index g-index papers 92 92 92 2246 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Metalâ€Free Oxidative Esterification of the Benzyl CH Bond. Advanced Synthesis and Catalysis, 2012, 354, 1287-1292.	4.3	155
2	Linear polycations by ring-opening polymerization as non-viral gene delivery vectors. Biomaterials, 2013, 34, 5391-5401.	11.4	70
3	Pore-Free Matrix with Cooperative Chelating of Hyperbranched Ligands for High-Performance Separation of Uranium. ACS Applied Materials & Separation of Uranium. ACS Applied Materials & Separation of Uranium.	8.0	69
4	Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery. Nanoscale, 2017, 9, 5935-5947.	5.6	63
5	Hyaluronic acid-based carbon dots for efficient gene delivery and cell imaging. RSC Advances, 2017, 7, 15613-15624.	3.6	53
6	Gadolinium-doped carbon dots as nano-theranostic agents for MR/FL diagnosis and gene delivery. Nanoscale, 2019, 11, 12973-12982.	5.6	50
7	Chiral multinuclear macrocyclic polyamine complexes: Synthesis, characterization and their interaction with plasmid DNA. Bioorganic and Medicinal Chemistry, 2007, 15, 696-701.	3.0	46
8	Ring-Opening Polymerization for Hyperbranched Polycationic Gene Delivery Vectors with Excellent Serum Tolerance. ACS Applied Materials & Serum Tolerance.	8.0	45
9	Photoluminescent F-doped carbon dots prepared by ring-opening reaction for gene delivery and cell imaging. RSC Advances, 2018, 8, 6053-6062.	3.6	45
10	Cyclen-based lipidic oligomers as potential gene delivery vehicles. Acta Biomaterialia, 2014, 10, 1412-1422.	8.3	42
11	Synthesis, DNA binding and cleavage activities of the copper (II) complexes of estrogen-macrocyclic polyamine conjugates. Bioorganic and Medicinal Chemistry, 2008, 16, 3871-3877.	3.0	39
12	Novel cationic lipids possessing protonated cyclen and imidazolium salt for gene delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 326-335.	4.3	34
13	Novel imidazole-functionalized cyclen cationic lipids: Synthesis and application as non-viral gene vectors. Bioorganic and Medicinal Chemistry, 2013, 21, 3105-3113.	3.0	33
14	Cationic polymer-derived carbon dots for enhanced gene delivery and cell imaging. Biomaterials Science, 2019, 7, 1940-1948.	5.4	33
15	The conjugates of uracil–cyclen Zn(II) complexes: Synthesis, characterization, and their interaction with plasmid DNA. Bioorganic and Medicinal Chemistry, 2006, 14, 5756-5764.	3.0	31
16	Novel Signal-Enhancing Immunoassay for Ultrasensitive Biomarker Detection Based on Laser-Induced Fluorescence. Analytical Chemistry, 2015, 87, 2959-2965.	6.5	31
17	Modifiable diyne-based covalent organic framework: a versatile platform for in situ multipurpose functionalization. RSC Advances, 2016, 6, 39150-39158.	3.6	31
18	Cyclen-Based Cationic Lipids for Highly Efficient Gene Delivery towards Tumor Cells. PLoS ONE, 2011, 6, e23134.	2.5	30

#	Article	IF	CITATIONS
19	Self-assembled core–shell-corona multifunctional non-viral vector with AIE property for efficient hepatocyte-targeting gene delivery. Polymer Chemistry, 2017, 8, 7486-7498.	3.9	30
20	Low molecular weight PEI-based polycationic gene vectors via Michael addition polymerization with improved serum-tolerance. Polymer, 2015, 65, 45-54.	3.8	29
21	TACN-based oligomers with aromatic backbones for efficient nucleic acid delivery. Chemical Communications, 2014, 50, 6454-6457.	4.1	28
22	Low Molecular Weight Oligomers with Aromatic Backbone as Efficient Nonviral Gene Vectors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10743-10751.	8.0	28
23	Cyclen-based cationic lipids containing a pH-sensitive moiety as gene delivery vectors. Organic and Biomolecular Chemistry, 2015, 13, 620-630.	2.8	27
24	En Bloc Pancreaticoduodenectomy and Right Colectomy in the Treatment of Locally Advanced Colon Cancer. Diseases of the Colon and Rectum, 2013, 56, 874-880.	1.3	26
25	Cyclen-based cationic lipids with double hydrophobic tails for efficient gene delivery. Biomaterials Science, 2014, 2, 1460-1470.	5.4	26
26	Cross-linked polymers with fluorinated bridges for efficient gene delivery. Journal of Materials Chemistry B, 2017, 5, 8542-8553.	5. 8	25
27	TACN-based cationic lipids with amino acid backbone and double tails: Materials for non-viral gene delivery. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1771-1775.	2,2	24
28	Low molecular weight PEI-based fluorinated polymers for efficient gene delivery. European Journal of Medicinal Chemistry, 2019, 162, 602-611.	5 . 5	22
29	Low molecular weight PEI-appended polyesters as non-viral gene delivery vectors. European Journal of Medicinal Chemistry, 2014, 78, 118-125.	5.5	21
30	Diol glycidyl ether-bridged low molecular weight PEI as potential gene delivery vehicles. Journal of Materials Chemistry B, 2015, 3, 2660-2670.	5.8	21
31	Diol glycidyl ether-bridged cyclens: preparation and their applications in gene delivery. Organic and Biomolecular Chemistry, 2011, 9, 2413.	2.8	20
32	Aromatic Modification of Low Molecular Weight PEI for Enhanced Gene Delivery. Polymers, 2017, 9, 362.	4. 5	20
33	A Mild and Efficient Method for <i>N</i> â€Arylnucleobase Synthesis <i>via</i> the Crossâ€Coupling Reactions of Nucleobases with Arylboronic Acids Catalyzed by Simple Copper Salts. Helvetica Chimica Acta, 2008, 91, 1008-1014.	1.6	19
34	Structure–activity relationship studies of symmetrical cationic bolasomes as non-viral gene vectors. Journal of Materials Chemistry B, 2016, 4, 5575-5584.	5 . 8	19
35	Hydrophobically modified carbon dots as a multifunctional platform for serum-resistant gene delivery and cell imaging. Biomaterials Science, 2020, 8, 3730-3740.	5.4	19
36	Low molecular weight PEI-based biodegradable lipopolymers as gene delivery vectors. Organic and Biomolecular Chemistry, 2013, 11, 1242.	2.8	18

#	Article	lF	CITATIONS
37	Bioreducible cross-linked polymers based on G1 peptide dendrimer as potential gene delivery vectors. European Journal of Medicinal Chemistry, 2014, 87, 413-420.	5.5	18
38	A reduction-responsive liposomal nanocarrier with self-reporting ability for efficient gene delivery. Journal of Materials Chemistry B, 2018, 6, 2860-2868.	5.8	18
39	Zn(<scp>ii</scp>) coordination to cyclen-based polycations for enhanced gene delivery. Journal of Materials Chemistry B, 2019, 7, 451-459.	5.8	17
40	Biodegradable cyclen-based linear and cross-linked polymers as non-viral gene vectors. Bioorganic and Medicinal Chemistry, 2012, 20, 1380-1387.	3.0	16
41	Forensic applicability of multiâ€allelic InDels with mononucleotide homopolymer structures. Electrophoresis, 2018, 39, 2136-2143.	2.4	16
42	Functionalized Asymmetric Bola-Type Amphiphiles for Efficient Gene and Drug Delivery. Nanomaterials, 2018, 8, 115.	4.1	16
43	Biotinylated Cyclenâ€Contained Cationic Lipids as Nonâ€Viral Gene Delivery Vectors. Chemical Biology and Drug Design, 2013, 82, 376-383.	3.2	15
44	Cationic gemini lipids with cyclen headgroups: interaction with DNA and gene delivery abilities. RSC Advances, 2014, 4, 44261-44268.	3.6	15
45	Amino Acid-Modified Polyethylenimines with Enhanced Gene Delivery Efficiency and Biocompatibility. Polymers, 2015, 7, 2316-2331.	4.5	15
46	Novel Reticular Cyclenâ€Based Polymer as Gene Vector in DNA Transfection. Chemical Biology and Drug Design, 2009, 73, 216-224.	3.2	14
47	Cyclen-based double-tailed lipids for DNA delivery: Synthesis and the effect of linking group structures. Bioorganic and Medicinal Chemistry, 2015, 23, 5756-5763.	3.0	14
48	Amphiphilic polymers formed from ring-opening polymerization: a strategy for the enhancement of gene delivery. Biomaterials Science, 2017, 5, 718-729.	5.4	14
49	Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency. European Journal of Medicinal Chemistry, 2017, 136, 585-595.	5.5	14
50	Amino Acid-Linked Low Molecular Weight Polyethylenimine for Improved Gene Delivery and Biocompatibility. Molecules, 2020, 25, 975.	3.8	14
51	Multichannel Chromogenic and Chiral Anions Recognition by Imidazolium Functionalized BINOL Derivatives. Chinese Journal of Chemistry, 2013, 31, 641-650.	4.9	13
52	ROS-responsive fluorinated polycations as non-viral gene vectors. European Journal of Medicinal Chemistry, 2019, 182, 111666.	5.5	13
53	Synthesis and gene transfection activity of cyclen-based cationic lipids with asymmetric acyl-cholesteryl hydrophobic tails. Organic and Biomolecular Chemistry, 2014, 12, 3484-3492.	2.8	11
54	Ring-opening polymerization of diepoxides as an alternative method to overcome PEG dilemma in gene delivery. Polymer, 2018, 134, 53-62.	3.8	11

#	Article	lF	CITATIONS
55	Zn-dipicolylamine-based reactive oxygen species-responsive lipids for siRNA delivery and in vivo colitis treatment. Acta Biomaterialia, 2022, 147, 287-298.	8.3	11
56	Arm effects of mononuclear armed cyclen copper complexes on DNA cleavage. Transition Metal Chemistry, 2008, 33, 759-765.	1.4	10
57	Immobilization cyclen copper (II) on merrifield resin: Efficient oxidative cleavage of plasmid DNA. Journal of Applied Polymer Science, 2009, 111, 2485-2492.	2.6	10
58	Synthesis, DNA binding and cleavage studies of the copper(II) complexes of PNA-cyclen conjugates. Science China Chemistry, 2011, 54, 129-136.	8.2	10
59	Cyclenâ€Based Cationic Lipids Containing Carbamate Linkages as Efficient Gene Delivery Vectors with Low Toxicity. ChemPlusChem, 2012, 77, 584-591.	2.8	10
60	Hydroxyl-containing non-viral lipidic gene vectors with macrocyclic polyamine headgroups. RSC Advances, 2015, 5, 59417-59427.	3.6	10
61	Synthesis and Properties of Low-Molecular-Weight PEI-Based Lipopolymers for Delivery of DNA. Polymers, 2018, 10, 1060.	4.5	10
62	A Fluorescent Self-Reporting Vector with GSH Reduction Responsiveness for Nucleic Acid Delivery. ACS Applied Bio Materials, 2021, 4, 5717-5726.	4.6	10
63	Design, synthesis and antiproliferative activity of thiazolo[5,4-d]pyrimidine derivatives through the atom replacement strategy. European Journal of Medicinal Chemistry, 2017, 138, 1034-1041.	5.5	9
64	Potential forensic biogeographic application of diatom colony consistency analysis employing pyrosequencing profiles of the 18S rDNA V7 region. International Journal of Legal Medicine, 2018, 132, 1611-1620.	2.2	9
65	Forensic drowning site inference employing mixed pyrosequencing profile of DNA barcode gene (rbcL). International Journal of Legal Medicine, 2019, 133, 1351-1360.	2.2	9
66	Linear TACN-based cationic polymers as non-viral gene vectors. RSC Advances, 2014, 4, 59164-59174.	3.6	8
67	Bio-reducible polycations from ring-opening polymerization as potential gene delivery vehicles. Organic and Biomolecular Chemistry, 2016, 14, 6470-6478.	2.8	8
68	Polyethylenimine analogs for improved gene delivery: effect of the type of amino groups. RSC Advances, 2016, 6, 5391-5400.	3.6	8
69	Glutathione modified low molecular weight PEI for highly improved gene transfection ability and biocompatibility. New Journal of Chemistry, 2019, 43, 12109-12117.	2.8	8
70	Ferroceneâ€bridging dinuclear cyclen copper(II) complexes as high efficient artificial nucleases: design, synthesis and interaction with DNA. Applied Organometallic Chemistry, 2008, 22, 243-248.	3.5	7
71	Interaction of bis-aryl functionalized molecules with nucleosides and nucleic acids. Science China Chemistry, 2010, 53, 103-112.	8.2	7
72	Ischemic Liver Injury After Complete Occlusion of Hepatic Artery in the Treatment of Delayed Postoperative Arterial Bleeding. Journal of Gastrointestinal Surgery, 2015, 19, 2235-2242.	1.7	7

#	Article	IF	Citations
73	Biodegradable Gene Carriers Containing Rigid Aromatic Linkage with Enhanced DNA Binding and Cell Uptake. Polymers, 2018, 10, 1080.	4.5	7
74	A liquid chromatography–tandem mass spectrometry method to simultaneously determinate dichlorvos and phoxim in tobacco. Biomedical Chromatography, 2019, 33, e4537.	1.7	7
75	Bioinspired pyrimidine-containing cationic polymers as effective nanocarriers for DNA and protein delivery. Journal of Materials Chemistry B, 2020, 8, 2275-2285.	5.8	7
76	Efficient and Mild Protocol for the Synthesis of 4(3)â€Substituted 3(4)â€Nitroâ€1 <i>H</i> â€pyrroles and 3â€Substituted 4â€Methylâ€2â€tosylâ€1 <i>H</i> â€pyrroles from Nitroolefins and Tosylmethyl Isocyanide in Ionic Liquids. Chinese Journal of Chemistry, 2009, 27, 1782-1788.	:4.9	6
77	Novel cyclen-based linear polymer as a high-affinity binding material for DNA condensation. Science in China Series B: Chemistry, 2009, 52, 483-488.	0.8	6
78	Zn(<scp>ii</scp>)-cyclen complex-based liposomes for gene delivery: the advantage of Zn coordination. New Journal of Chemistry, 2019, 43, 16138-16147.	2.8	6
79	Fluorinated polymer emulsion systems: Construction and application in delivering genes and proteins. European Journal of Medicinal Chemistry, 2020, 207, 112799.	5.5	6
80	One-step fabrication of functional carbon dots with long wavelength emission for gene delivery and bio-imaging. Journal of Materials Chemistry B, 2021, 9, 8518-8529.	5.8	6
81	Construction of GSH-triggered cationic fluoropolymers as two-in-one nanoplatforms for combined chemo-gene therapy. Journal of Materials Chemistry B, 2022, , .	5.8	6
82	Cationic lipids with a cyclen headgroup: synthesisÂand structure–activity relationship studies as non-viral gene vectors. RSC Advances, 2017, 7, 18681-18689.	3.6	5
83	Small Combinatorial Library of Lipidoids as Nanovectors for Gene Delivery. ACS Applied Nano Materials, 2018, 1, 3925-3934.	5.0	5
84	Zn-Promoted gene transfection efficiency for non-viral vectors: a mechanism study. New Journal of Chemistry, 2021, 45, 13549-13557.	2.8	5
85	Liposomes Derived from Macrocyclic Polyamine as a Versatile Macromolecule Delivery System. ACS Applied Bio Materials, 2021, 4, 844-852.	4.6	5
86	Cationic Heteropolymers with Various Functional Groups as Efficient and Biocompatible Nonviral Gene Vectors. ACS Applied Bio Materials, 2020, 3, 3526-3534.	4.6	4
87	Asymmetric synthesis of 2,6-substituted dihydropyrone catalyzed by 3-monosubstituted and 3,3′-bisubstituted BINOL titanium complexes. Chemical Papers, 2008, 62, .	2.2	2
88	Synthesis of <i>N</i> ê€squaramidoacids and their application in asymmetric borane reduction of prochiral ketones. Chinese Journal of Chemistry, 2004, 22, 585-589.	4.9	2
89	A cyclen-based fluoropolymer as a versatile vector for gene and protein delivery. European Polymer Journal, 2022, 170, 111153.	5.4	2
90	Synthesis and primary biological evaluation of 188ReN-NEMPTDD. Journal of Radioanalytical and Nuclear Chemistry, 2008, 277, 365-369.	1.5	1

#	Article	IF	CITATIONS
91	Zinc(ii)-cyclen coordinative amphiphiles for enhanced gene delivery. RSC Advances, 2020, 10, 39842-39853.	3.6	1