Boris Zhivotovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3467186/publications.pdf Version: 2024-02-01

		3325	1489
353	51,716	91	219
papers	citations	h-index	g-index
371	371	371	63843
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	5.0	4,036
3	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
4	Regulation of cell death: the calcium–apoptosis link. Nature Reviews Molecular Cell Biology, 2003, 4, 552-565.	16.1	2,604
5	Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death and Differentiation, 2009, 16, 3-11.	5.0	2,572
6	Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation, 2012, 19, 107-120.	5.0	2,144
7	Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 1995, 15, 961-973.	3.8	1,772
8	Mitochondria, oxidative stress and cell death. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 913-922.	2.2	1,674
9	Mitochondrial Oxidative Stress: Implications for Cell Death. Annual Review of Pharmacology and Toxicology, 2007, 47, 143-183.	4.2	1,068
10	Cytochrome c release from mitochondria proceeds by a two-step process. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1259-1263.	3.3	873
11	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	5.0	811
12	Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2476-2481.	3.3	658
13	Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death and Differentiation, 2005, 12, 1463-1467.	5.0	618
14	DNA damage-induced apoptosis. Oncogene, 2004, 23, 2797-2808.	2.6	617
15	Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death and Differentiation, 2009, 16, 1093-1107.	5.0	599
16	Mitochondria in cancer cells: what is so special about them?. Trends in Cell Biology, 2008, 18, 165-173.	3.6	555
17	Death through a tragedy: mitotic catastrophe. Cell Death and Differentiation, 2008, 15, 1153-1162.	5.0	537
18	Morphological classification of plant cell deaths. Cell Death and Differentiation, 2011, 18, 1241-1246.	5.0	481

#	Article	IF	CITATIONS
19	Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat cells. EMBO Journal, 1999, 18, 2040-2048.	3.5	464
20	Calcium and cell death mechanisms: A perspective from the cell death community. Cell Calcium, 2011, 50, 211-221.	1.1	435
21	Cell death-based treatment of lung adenocarcinoma. Cell Death and Disease, 2018, 9, 117.	2.7	434
22	Calcium and mitochondria in the regulation of cell death. Biochemical and Biophysical Research Communications, 2015, 460, 72-81.	1.0	402
23	Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 639-647.	0.5	375
24	Caspase-2 Acts Upstream of Mitochondria to Promote Cytochromec Release during Etoposide-induced Apoptosis. Journal of Biological Chemistry, 2002, 277, 29803-29809.	1.6	369
25	Apoptosis induced by a human milk protein Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8064-8068.	3.3	353
26	Cell Death Mechanisms and Their Implications in Toxicology. Toxicological Sciences, 2011, 119, 3-19.	1.4	336
27	Glucose and Tolbutamide Induce Apoptosis in Pancreatic β-Cells. Journal of Biological Chemistry, 1998, 273, 33501-33507.	1.6	334
28	Caspases and cancer. Cell Death and Differentiation, 2011, 18, 1441-1449.	5.0	332
29	Free Radicals in Cross Talk Between Autophagy and Apoptosis. Antioxidants and Redox Signaling, 2014, 21, 86-102.	2.5	329
30	Caspases: their intracellular localization and translocation during apoptosis. Cell Death and Differentiation, 1999, 6, 644-651.	5.0	321
31	Injected cytochrome c induces apoptosis. Nature, 1998, 391, 449-450.	13.7	308
32	Inhibition of Mammalian Thioredoxin Reductase by Some Flavonoids: Implications for Myricetin and Quercetin Anticancer Activity. Cancer Research, 2006, 66, 4410-4418.	0.4	286
33	Various modes of cell death induced by DNA damage. Oncogene, 2013, 32, 3789-3797.	2.6	264
34	Review: Nuclear Events in Apoptosis. Journal of Structural Biology, 2000, 129, 346-358.	1.3	260
35	Apoptosis and genomic instability. Nature Reviews Molecular Cell Biology, 2004, 5, 752-762.	16.1	257
36	Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proceedings of the United States of America, 2005, 102, 14463-14468.	3.3	228

#	Article	IF	CITATIONS
37	Mitochondrial regulation of cell death: Processing of apoptosis-inducing factor (AIF). Biochemical and Biophysical Research Communications, 2010, 396, 95-100.	1.0	227
38	Apoptosis in Human Disease: A New Skin for the Old Ceremony?. Biochemical and Biophysical Research Communications, 1999, 266, 699-717.	1.0	225
39	Mechanisms of Interferon-alpha induced apoptosis in malignant cells. Oncogene, 2002, 21, 1251-1262.	2.6	210
40	Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. Journal of Cell Science, 2000, 113, 4399-4411.	1.2	204
41	Apoptosis: Cell death defined by caspase activation. Cell Death and Differentiation, 1999, 6, 495-496.	5.0	195
42	Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death and Differentiation, 2001, 8, 829-840.	5.0	193
43	Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy. Cell Death and Differentiation, 2009, 16, 1018-1029.	5.0	192
44	Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nature Cell Biology, 2009, 11, 1347-1354.	4.6	192
45	Cytochrome c Release Occurs via Ca2+-dependent and Ca2+-independent Mechanisms That Are Regulated by Bax. Journal of Biological Chemistry, 2001, 276, 19066-19071.	1.6	187
46	Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Current Biology, 2004, 14, R339-R340.	1.8	187
47	A Comparative Study of Apoptosis and Necrosis in HepG2 Cells: Oxidant-Induced Caspase Inactivation Leads to Necrosis. Biochemical and Biophysical Research Communications, 1999, 255, 6-11.	1.0	183
48	Caspase-2 function in response to DNA damage. Biochemical and Biophysical Research Communications, 2005, 331, 859-867.	1.0	182
49	The Warburg effect and mitochondrial stability in cancer cells. Molecular Aspects of Medicine, 2010, 31, 60-74.	2.7	181
50	Involvement of Cellular Proteolytic Machinery in Apoptosis. Biochemical and Biophysical Research Communications, 1997, 230, 481-488.	1.0	180
51	Mathematical Modelling of Cell-Fate Decision in Response to Death Receptor Engagement. PLoS Computational Biology, 2010, 6, e1000702.	1.5	179
52	Nuclear calcium transport and the role of calcium in apoptosis. Cell Calcium, 1994, 16, 279-288.	1.1	178
53	Role of cardiolipin in cytochrome c release from mitochondria. Cell Death and Differentiation, 2007, 14, 1243-1247.	5.0	173
54	Evaluation of caspase activity in apoptotic cells. Journal of Immunological Methods, 2002, 265, 97-110.	0.6	164

4

#	Article	IF	CITATIONS
55	Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis, 1997, 130, 17-27.	0.4	159
56	Proteases in autophagy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 44-50.	1.1	157
57	Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy, 2012, 8, 1032-1044.	4.3	149
58	Mitochondria as targets for cancer chemotherapy. Seminars in Cancer Biology, 2009, 19, 57-66.	4.3	146
59	Autophagy and metacaspase determine the mode of cell death in plants. Journal of Cell Biology, 2013, 203, 917-927.	2.3	142
60	An increase in intracellular Ca2+ is required for the activation of mitochondrial calpain to release AIF during cell death. Cell Death and Differentiation, 2008, 15, 1857-1864.	5.0	138
61	Mechanism of Dithiocarbamate Inhibition of Apoptosis:  Thiol Oxidation by Dithiocarbamate Disulfides Directly Inhibits Processing of the Caspase-3 Proenzyme. Chemical Research in Toxicology, 1997, 10, 636-643.	1.7	137
62	All along the watchtower: on the regulation of apoptosis regulators. FASEB Journal, 1999, 13, 1647-1657.	0.2	136
63	Tumor Radiosensitivity and Apoptosis. Experimental Cell Research, 1999, 248, 10-17.	1.2	136
64	Distinct Pathways for Stimulation of Cytochrome cRelease by Etoposide. Journal of Biological Chemistry, 2000, 275, 32438-32443.	1.6	133
65	DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death and Differentiation, 2008, 15, 555-566.	5.0	132
66	VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death and Differentiation, 2004, 11, 175-182.	5.0	130
67	Cytoskeletal Breakdown and Apoptosis Elicited by NO Donors in Cerebellar Granule Cells Require NMDA Receptor Activation. Journal of Neurochemistry, 1996, 67, 2484-2493.	2.1	128
68	Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochemical Journal, 1998, 329, 95-99.	1.7	123
69	Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood, 2003, 101, 1080-1086.	0.6	122
70	Cardiolipin oxidation sets cytochrome c free. Nature Chemical Biology, 2005, 1, 188-189.	3.9	122
71	Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radical Biology and Medicine, 2013, 57, 176-187.	1.3	121
72	Processed caspaseâ€2 can induce mitochondriaâ€mediated apoptosis independently of its enzymatic activity. EMBO Reports, 2004, 5, 643-648.	2.0	119

#	Article	IF	CITATIONS
73	Ultrarapid caspase-3 dependent apoptosis induction by serine/threonine phosphatase inhibitors. Cell Death and Differentiation, 1999, 6, 1099-1108.	5.0	117
74	Mitochondria as targets for chemotherapy. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 624-640.	2.2	113
75	Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment. Oncogene, 2002, 21, 65-77.	2.6	110
76	Mesenchymal stem cells and hypoxia: Where are we?. Mitochondrion, 2014, 19, 105-112.	1.6	110
77	Interferon α-induced Apoptosis in Tumor Cells Is Mediated through the Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Signaling Pathway. Journal of Biological Chemistry, 2004, 279, 24152-24162.	1.6	106
78	Post-translational Modification of Caspases: The Other Side of Apoptosis Regulation. Trends in Cell Biology, 2017, 27, 322-339.	3.6	104
79	The unpredictable caspase-2: what can it do?. Trends in Cell Biology, 2010, 20, 150-159.	3.6	102
80	miRNA-214 modulates radiotherapy response of non-small cell lung cancer cells through regulation of p38MAPK, apoptosis and senescence. British Journal of Cancer, 2012, 107, 1361-1373.	2.9	102
81	Caspase-2 Permeabilizes the Outer Mitochondrial Membrane and Disrupts the Binding of Cytochrome c to Anionic Phospholipids. Journal of Biological Chemistry, 2004, 279, 49575-49578.	1.6	100
82	Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm for effective cancer therapy. Free Radical Biology and Medicine, 2011, 50, 1546-1555.	1.3	100
83	Apoptosis — Molecular mechanisms and biomedical implications. Molecular Aspects of Medicine, 1996, 17, 1-110.	2.7	98
84	Release of adenylate kinase 2 from the mitochondrial intermembrane space during apoptosis. FEBS Letters, 1999, 447, 10-12.	1.3	98
85	Doxorubicin Requires the Sequential Activation of Caspase-2, Protein Kinase Cδ, and c-Jun NH2-terminal Kinase to Induce Apoptosis. Molecular Biology of the Cell, 2005, 16, 3821-3831.	0.9	98
86	Mitophagy: Link to cancer development and therapy. Biochemical and Biophysical Research Communications, 2017, 482, 432-439.	1.0	98
87	Formation of 50 kbp chromatin fragments in isolated liver nuclei is mediated by protease and endonuclease activation. FEBS Letters, 1994, 351, 150-154.	1.3	97
88	Role of apoptosis in pancreatic beta-cell death in diabetes. Diabetes, 2001, 50, S44-S47.	0.3	97
89	Multimeric α-Lactalbumin from Human Milk Induces Apoptosis through a Direct Effect on Cell Nuclei. Experimental Cell Research, 1999, 246, 451-460.	1.2	96
90	Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death and Differentiation, 2009, 16, 1419-1425.	5.0	96

#	Article	IF	CITATIONS
91	Cleavage of Bcl-2 is an early event in chemotherapy-induced apoptosis of human myeloid leukemia cells. Leukemia, 1999, 13, 719-728.	3.3	95
92	Aberrant mitochondrial iron distribution and maturation arrest characterize early erythroid precursors in low-risk myelodysplastic syndromes. Blood, 2005, 106, 247-253.	0.6	94
93	Saga of Mcl-1: regulation from transcription to degradation. Cell Death and Differentiation, 2020, 27, 405-419.	5.0	94
94	Apoptosis-inducing factor determines the chemoresistance of non-small-cell lung carcinomas. Oncogene, 2004, 23, 6282-6291.	2.6	93
95	Apoptosis induced by microinjection of cytochrome c is caspase-dependent and is inhibited by Bcl-2. Cell Death and Differentiation, 1998, 5, 660-668.	5.0	91
96	The most unkindest cut of all: on the multiple roles of mammalian caspases*. Leukemia, 2000, 14, 1514-1525.	3.3	91
97	Functional connection between p53 and caspase-2 is essential for apoptosis induced by DNA damage. Oncogene, 2006, 25, 5683-5692.	2.6	91
98	Multiple Proteases Are Involved in Thymocyte Apoptosis. Experimental Cell Research, 1995, 221, 404-412.	1.2	90
99	Antioxidants J811 and 17?-estradiol protect cerebellar granule cells from methylmercury-induced apoptotic cell death. Journal of Neuroscience Research, 2000, 62, 557-565.	1.3	88
100	Mitochondrial Involvement in Migration, Invasion and Metastasis. Frontiers in Cell and Developmental Biology, 2019, 7, 355.	1.8	88
101	Apoptotic Pathways and Therapy Resistance in Human Malignancies. Advances in Cancer Research, 2005, 94, 143-196.	1.9	85
102	Detection of pro-caspase-3 in cytosol and mitochondria of various tissues. FEBS Letters, 1998, 431, 167-169.	1.3	84
103	To kill or be killed: how viruses interact with the cell death machinery. Journal of Internal Medicine, 2010, 267, 473-482.	2.7	84
104	Role of the nucleus in apoptosis: signaling and execution. Cellular and Molecular Life Sciences, 2015, 72, 4593-4612.	2.4	84
105	Understanding cell cycle and cell death regulation provides novel weapons against human diseases. Journal of Internal Medicine, 2017, 281, 483-495.	2.7	84
106	Role of Alterations in the Apoptotic Machinery in Sensitivity of Cancer Cells to Treatment. Current Pharmaceutical Design, 2006, 12, 4411-4425.	0.9	83
107	Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. Journal of Cell Science, 2000, 113 Pt 24, 4399-411.	1.2	82
108	A folding variant of human α-lactalbumin induces mitochondrial permeability transition in isolated mitochondria. FEBS Journal, 2001, 268, 186-191.	0.2	81

#	Article	IF	CITATIONS
109	Cell death mechanisms: Cross-talk and role in disease. Experimental Cell Research, 2010, 316, 1374-1383.	1.2	81
110	Mitochondrial targeting of tBid/Bax: a role for the TOM complex?. Cell Death and Differentiation, 2009, 16, 1075-1082.	5.0	80
111	Differences in Expression of Pro-Caspases in Small Cell and Non-small Cell Lung Carcinoma. Biochemical and Biophysical Research Communications, 1999, 262, 381-387.	1.0	79
112	A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid. Cell Death and Differentiation, 2002, 9, 301-308.	5.0	79
113	Mitotic catastrophe and cancer drug resistance: A link that must to be broken. Drug Resistance Updates, 2016, 24, 1-12.	6.5	79
114	Endothelial Cell Surface ATP Synthase-Triggered Caspase-Apoptotic Pathway Is Essential for K1-5-Induced Antiangiogenesis. Cancer Research, 2004, 64, 3679-3686.	0.4	77
115	Cytochrome c: the Achilles' heel in apoptosis. Cellular and Molecular Life Sciences, 2012, 69, 1787-1797.	2.4	77
116	S100A4 interacts with p53 in the nucleus and promotes p53 degradation. Oncogene, 2013, 32, 5531-5540.	2.6	77
117	Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis, 2006, 27, 1939-1945.	1.3	75
118	Targeted Deletion of Autophagy Genes Atg5 or Atg7 in the Chondrocytes Promotes Caspase-Dependent Cell Death and Leads to Mild Growth Retardation. Journal of Bone and Mineral Research, 2015, 30, 2249-2261.	3.1	75
119	Involvement of Ca2+ in the Formation of High-Molecular-Weight DNA Fragments in Thymocyte Apoptosis. Biochemical and Biophysical Research Communications, 1994, 202, 120-127.	1.0	73
120	The Mitochondrial TOM Complex Is Required for tBid/Bax-induced Cytochrome c Release. Journal of Biological Chemistry, 2007, 282, 27633-27639.	1.6	73
121	DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. Oncogene, 2009, 28, 1949-1959.	2.6	73
122	Cytochrome c release and caspase-3 activation during colchicine-induced apoptosis of cerebellar granule cells. European Journal of Neuroscience, 1999, 11, 1067-1072.	1.2	72
123	Combined inhibition of DNA methyltransferase and histone deacetylase restores caspase-8 expression and sensitizes SCLC cells to TRAIL. Carcinogenesis, 2011, 32, 1450-1458.	1.3	72
124	Androgen treatment of neonatal rats decreases susceptibility of cerebellar granule neurons to oxidative stressin vitro. European Journal of Neuroscience, 1999, 11, 1285-1291.	1.2	71
125	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	4.5	71
126	To Eat or to Die: Deciphering Selective Forms of Autophagy. Trends in Biochemical Sciences, 2020, 45, 347-364.	3.7	71

#	Article	IF	CITATIONS
127	Defective caspase-3 relocalization in non-small cell lung carcinoma. Oncogene, 2001, 20, 2877-2888.	2.6	69
128	Characterization of the Human FLICE-Inhibitory Protein Locus and Comparison of the Anti-Apoptotic Activity of Four Different FLIP Isoforms. Scandinavian Journal of Immunology, 2001, 54, 180-189.	1.3	68
129	Methylmercury and H2O2 provoke lysosomal damage in human astrocytoma D384 cells followed by apoptosis. Free Radical Biology and Medicine, 2001, 30, 1347-1356.	1.3	68
130	Molecular Comprehension of Mcl-1: From Gene Structure to Cancer Therapy. Trends in Cell Biology, 2019, 29, 549-562.	3.6	68
131	Protease Activation in Apoptosis Induced by MAL. Experimental Cell Research, 1999, 249, 260-268.	1.2	67
132	Oxidative modification sensitizes mitochondrial apoptosis-inducing factor to calpain-mediated processing. Free Radical Biology and Medicine, 2010, 48, 791-797.	1.3	65
133	A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle. Autophagy, 2011, 7, 83-90.	4.3	65
134	Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells. Experimental Cell Research, 2006, 312, 2806-2815.	1.2	64
135	Autophagy in Toxicology: Cause or Consequence?. Annual Review of Pharmacology and Toxicology, 2013, 53, 275-297.	4.2	64
136	Tudor staphylococcal nuclease: biochemistry and functions. Cell Death and Differentiation, 2016, 23, 1739-1748.	5.0	62
137	Role of Nucleases in Apoptosis. International Archives of Allergy and Immunology, 1994, 105, 333-338.	0.9	61
138	Defects in the apoptotic machinery of cancer cells: role in drug resistance. Seminars in Cancer Biology, 2003, 13, 125-134.	4.3	61
139	Chromosomal breaks during mitotic catastrophe trigger γH2AX–ATM–p53-mediated apoptosis. Journal of Cell Science, 2011, 124, 2951-2963.	1.2	61
140	Apoptosis in refractory anaemia with ringed sideroblasts is initiated at the stem cell level and associated with increased activation of caspases. British Journal of Haematology, 2001, 112, 714-726.	1.2	58
141	Hypomethylation and apoptosis in 5-azacytidine–treated myeloid cells. Experimental Hematology, 2008, 36, 149-157.	0.2	58
142	The transcriptosomal response of human A549 lung cells to a hydrogen peroxide-generating system: relationship to DNA damage, cell cycle arrest, and caspase activation. Free Radical Biology and Medicine, 2004, 36, 881-896.	1.3	57
143	A long way to go: caspase inhibitors in clinical use. Cell Death and Disease, 2021, 12, 949.	2.7	57
144	Mitochondrial cytochrome c release may occur by volume-dependent mechanisms not involving permeability transition. Biochemical Journal, 2004, 378, 213-217.	1.7	56

#	Article	IF	CITATIONS
145	p73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene, 2008, 27, 4363-4372.	2.6	56
146	Apoptosis regulation by subcellular relocation of caspases. Scientific Reports, 2018, 8, 12199.	1.6	56
147	Ca2+ and Endonuclease Activation in Radiation-Induced Lymphoid Cell Death. Experimental Cell Research, 1993, 207, 163-170.	1.2	55
148	Proteases in apoptosis. Experientia, 1996, 52, 968-978.	1.2	55
149	Dexamethasone-induced apoptosis in acute lymphoblastic leukemia involves differential regulation of Bcl-2 family members. Haematologica, 2007, 92, 1460-1469.	1.7	55
150	DNA-dependent protein kinase content and activity in lung carcinoma cell lines: correlation with intrinsic radiosensitivity. European Journal of Cancer, 1999, 35, 111-116.	1.3	54
151	Cell cycle and cell death in disease: past, present and future. Journal of Internal Medicine, 2010, 268, 395-409.	2.7	54
152	Doxorubicin sensitizes human tumor cells to NK cell―and Tâ€cellâ€mediated killing by augmented TRAIL receptor signaling. International Journal of Cancer, 2013, 133, 1643-1652.	2.3	54
153	Mitochondria-targeted betulinic and ursolic acid derivatives: synthesis and anticancer activity. MedChemComm, 2017, 8, 1934-1945.	3.5	54
154	Two Different Proteases Are Involved in the Proteolysis of Lamin during Apoptosis. Biochemical and Biophysical Research Communications, 1997, 233, 96-101.	1.0	53
155	Freezing induces artificial cleavage of apoptosis-related proteins in human bone marrow cells. Journal of Immunological Methods, 2000, 245, 91-94.	0.6	53
156	Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget, 2015, 6, 37066-37082.	0.8	53
157	Caspase-2 activation in neural stem cells undergoing oxidative stress-induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 354-363.	2.2	52
158	PRIMA-1MET induces mitochondrial apoptosis through activation of caspase-2. Oncogene, 2008, 27, 6571-6580.	2.6	52
159	The scaffold protein WRAP53Î ² orchestrates the ubiquitin response critical for DNA double-strand break repair. Genes and Development, 2014, 28, 2726-2738.	2.7	52
160	Involvement of Ca ²⁺ and ROS in αâ€ŧocopheryl succinateâ€induced mitochondrial permeabilization. International Journal of Cancer, 2010, 127, 1823-1832.	2.3	51
161	Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA11This article is dedicated to the memory of the late Professor Lars Ernster Free Radical Biology and Medicine, 2000, 29, 334-342.	1.3	50
162	Chapter Eight Caspases: Determination of Their Activities in Apoptotic Cells. Methods in Enzymology, 2008, 442, 157-181.	0.4	49

#	Article	IF	CITATIONS
163	Alterations in the nucleocytoplasmic transport in apoptosis: Caspases lead the way. Cell Proliferation, 2018, 51, e12467.	2.4	49
164	Application of a fluorometric assay to detect caspase activity in thymus tissue undergoing apoptosis in vivo. Journal of Immunological Methods, 1999, 226, 43-48.	0.6	48
165	Expression of Inhibitor of Apoptosis Proteins in Small- and Non-Small-Cell Lung Carcinoma Cells. Experimental Cell Research, 2002, 279, 277-290.	1.2	48
166	The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death. Oncogene, 2020, 39, 1-16.	2.6	48
167	Caspases: the enzymes of death. Essays in Biochemistry, 2003, 39, 25-40.	2.1	48
168	AMPA Neurotoxicity in Cultured Cerebellar Granule Neurons: Mode of Cell Death. Brain Research Bulletin, 1997, 43, 393-403.	1.4	45
169	Sorafenib Has Potent Antitumor Activity against Multiple Myeloma <i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> in the 5T33MM Mouse Model. Cancer Research, 2012, 72, 5348-5362.	0.4	44
170	Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4418-4425.	1.1	44
171	5-Fluorouracil signaling through a calcium–calmodulin-dependent pathway is required for p53 activation and apoptosis in colon carcinoma cells. Oncogene, 2013, 32, 4529-4538.	2.6	43
172	The role of p73 in hematological malignancies. Leukemia, 2006, 20, 757-766.	3.3	42
173	Higher spontaneous apoptotic index in small cell compared with non-small cell lung carcinoma cell lines; lack of correlation with Bcl-2/Bax. Lung Cancer, 1998, 22, 1-13.	0.9	41
174	Role of Apoptosis in the Response of Lung Carcinomas to Anti ancer Treatment. Annals of the New York Academy of Sciences, 2000, 926, 204-216.	1.8	41
175	Mitochondrial targeting of human peroxiredoxin $\hat{e} \in V$ protein and regulation of <i>PRDX5</i> gene expression by nuclear transcription factors controlling biogenesis of mitochondria. FEBS Journal, 2007, 274, 5804-5814.	2.2	41
176	Constitutive expression of the human peroxiredoxin V gene contributes to protection of the genome from oxidative DNA lesions and to suppression of transcription of noncoding DNA. FEBS Journal, 2006, 273, 2607-2617.	2.2	40
177	Drug-induced death of the asexual blood stages of Plasmodium falciparum occurs without typical signs of apoptosis. Microbes and Infection, 2006, 8, 1560-1568.	1.0	40
178	Caloric restriction - A promising anti-cancer approach: From molecular mechanisms to clinical trials. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1867, 29-41.	3.3	39
179	A link between mitotic defects and mitotic catastrophe: detection and cell fate. Biology Direct, 2021, 16, 25.	1.9	39
180	Granulocyte colony-stimulating factor inhibits Fas-triggered apoptosis in bone marrow cells isolated from patients with refractory anemia with ringed sideroblasts. Leukemia, 2001, 15, 742-751.	3.3	38

#	Article	IF	CITATIONS
181	miRNAs in lung cancer: A link to aging. Ageing Research Reviews, 2014, 17, 54-67.	5.0	38
182	Characterization of human buccal epithelial cells transfected with the simian virus 40 T-antigen gene. Carcinogenesis, 1995, 16, 2515-2521.	1.3	37
183	Inhibitors of the PI3-kinase/Akt pathway induce mitotic catastrophe in non-small cell lung cancer cells. International Journal of Cancer, 2006, 119, 1028-1038.	2.3	37
184	Coding polymorphisms in Casp5, Casp8 and DR4 genes may play a role in predisposition to lung cancer. Cancer Letters, 2009, 278, 183-191.	3.2	37
185	Citrate kills tumor cells through activation of apical caspases. Cellular and Molecular Life Sciences, 2012, 69, 4229-4237.	2.4	37
186	Termination of Lactation Induces Apoptosis and Alters the Expression of the Bcl-2 Family Members in the Rat Anterior Pituitary1. Endocrinology, 1998, 139, 2465-2471.	1.4	36
187	Caspase-3–dependent cleavage of Bcl-xL in the stroma exosomes is required for their uptake by hematological malignant cells. Blood, 2016, 128, 2655-2665.	0.6	36
188	Defective stress kinase and Bak activation in response to ionizing radiation but not cisplatin in a non-small cell lung carcinoma cell line. Experimental Cell Research, 2003, 289, 256-264.	1.2	35
189	Downregulation of peroxiredoxin V stimulates formation of etoposide-induced double-strand DNA breaks. FEBS Letters, 2004, 572, 75-79.	1.3	35
190	Serine proteases and calpains fulfill important supporting roles in the apoptotic tragedy of the cellular opera. Cell Death and Differentiation, 2005, 12, 1219-1224.	5.0	35
191	Antiapoptotic Role of Growth Factors in the Myelodysplastic Syndromes: Concordance Between In vitro and In vivo Observations. Clinical Cancer Research, 2005, 11, 6291-6299.	3.2	35
192	Critical role for hyperpolarization-activated cyclic nucleotide-gated channel 2 in the AIF-mediated apoptosis. EMBO Journal, 2010, 29, 3869-3878.	3.5	35
193	Cell death controlling complexes and their potential therapeutic role. Cellular and Molecular Life Sciences, 2015, 72, 505-517.	2.4	35
194	BCL-2 delay apoptosis and PARP cleavage induced by NO donors in GT1-7 cells. NeuroReport, 1996, 8, 273-276.	0.6	34
195	Inhibition of the mitochondrial pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase by doxorubicin and brequinar sensitizes cancer cells to TRAIL-induced apoptosis. Oncogene, 2014, 33, 3538-3549.	2.6	34
196	Cell death-based treatment of neuroblastoma. Cell Death and Disease, 2018, 9, 113.	2.7	34
197	p53-Autophagy-Metastasis Link. Cancers, 2018, 10, 148.	1.7	34
198	Apoptosis, Necrosis and Between. Cell Cycle, 2004, 3, 63-65.	1.3	33

#	Article	IF	CITATIONS
199	Early mitochondrial alterations in ATRA-induced cell death. Cell Death and Differentiation, 2006, 13, 119-128.	5.0	33
200	Doxorubicin and etoposide sensitize small cell lung carcinoma cells expressing caspase-8 to TRAIL. Molecular Cancer, 2010, 9, 87.	7.9	33
201	Cell death in adult neural stem cells. Cell Death and Differentiation, 2002, 9, 1377-1378.	5.0	32
202	Alteration of mitochondrial function and cell sensitization to death. Journal of Bioenergetics and Biomembranes, 2007, 39, 23-30.	1.0	32
203	The Warburg Effect returns to the cancer stage. Seminars in Cancer Biology, 2009, 19, 1-3.	4.3	32
204	Phosphoproteomic Profiling of NSCLC Cells Reveals that Ephrin B3 Regulates Pro-survival Signaling through Akt1-Mediated Phosphorylation of the EphA2 Receptor. Journal of Proteome Research, 2011, 10, 2566-2578.	1.8	32
205	Gene expression profiling of erythroblasts from refractory anaemia with ring sideroblasts (RARS) and effects of Gâ€CSF. British Journal of Haematology, 2010, 149, 844-854.	1.2	31
206	Involvement of autophagy in the outcome of mitotic catastrophe. Scientific Reports, 2017, 7, 14571.	1.6	31
207	Lamin and \hat{l}^2 -tubulin fragmentation precede chromatin degradation in glutamate-induced neuronal apoptosis. NeuroReport, 1996, 7, 2659-2664.	0.6	30
208	Mitochondria as the focus of apoptosis research. Cell Death and Differentiation, 1997, 4, 427-428.	5.0	30
209	Platinum drugs and taxanes: can we overcome resistance?. Cell Death Discovery, 2021, 7, 155.	2.0	30
210	Back to the future: The role of cytochrome c in cell death. Cell Death and Differentiation, 1998, 5, 459-460.	5.0	29
211	Full-length p73α Represses Drug-induced Apoptosis in Small Cell Lung Carcinoma Cells. Journal of Biological Chemistry, 2005, 280, 34159-34169.	1.6	29
212	miRNAâ€214 is related to invasiveness of human nonâ€small cell lung cancer and directly regulates alpha protein kinase 2 expression. Genes Chromosomes and Cancer, 2013, 52, 895-911.	1.5	29
213	Suppressed translation and ULK1 degradation as potential mechanisms of autophagy limitation under prolonged starvation. Autophagy, 2016, 12, 2085-2097.	4.3	29
214	2â€Deoxyâ€Dâ€glucose has distinct and cell lineâ€specific effects on the survival of different cancer cells upon antitumor drug treatment. FEBS Journal, 2018, 285, 4590-4601.	2.2	27
215	Caspase-2 is a negative regulator of necroptosis. International Journal of Biochemistry and Cell Biology, 2018, 102, 101-108.	1.2	27
216	Caspase-2: the reinvented enzyme. Oncogene, 2015, 34, 1877-1882.	2.6	26

#	Article	IF	CITATIONS
217	Two pathways of apoptosis induced with all-trans retinoic acid and etoposide in the myeloid cell line P39. Experimental Hematology, 1999, 27, 1322-1329.	0.2	25
218	Expression of Caspase-3 and -7 Does Not Correlate with the Extent of Apoptosis in Primary Breast Carcinomas. Cell Cycle, 2002, 1, 326-331.	1.3	25
219	Endogenously released Smac is insufficient to mediate cell death of human lung carcinoma in response to etoposide. Experimental Cell Research, 2004, 298, 83-95.	1.2	25
220	Simple and Efficient Protocol for Subcellular Fractionation of Normal and Apoptotic Cells. Cells, 2021, 10, 852.	1.8	25
221	Inorganic mercury modifies Ca2+ signals, triggers apoptosis and potentiates NMDA toxicity in cerebellar granule neurons. Cell Death and Differentiation, 1997, 4, 317-324.	5.0	24
222	Outer mitochondrial membrane permeabilization: an open-and-shut case?. Cell Death and Differentiation, 2003, 10, 485-487.	5.0	24
223	Upregulation of c-FLIP-short in response to TRAIL promotes survival of NSCLC cells, which could be suppressed by inhibition of Ca2+/calmodulin signaling. Cell Death and Disease, 2013, 4, e522-e522.	2.7	24
224	Desmin mutations result in mitochondrial dysfunction regardless of their aggregation properties. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165745.	1.8	24
225	Tudor staphylococcal nuclease drives chemoresistance of non-small cell lung carcinoma cells by regulating S100A11. Oncotarget, 2015, 6, 12156-12173.	0.8	24
226	Apoptosis in rat hippocampal dentate gyrus after intraventricular colchicine. NeuroReport, 1997, 8, 3779-3783.	0.6	23
227	Inhibition of Ephrin B3-mediated survival signaling contributes to increased cell death response of non-small cell lung carcinoma cells after combined treatment with ionizing radiation and PKC 412. Cell Death and Disease, 2013, 4, e454-e454.	2.7	23
228	BNIP3 in Lung Cancer: To Kill or Rescue?. Cancers, 2020, 12, 3390.	1.7	23
229	Spontaneous and radiation-induced apoptosis in lung carcinoma cells with different intrinsic radiosensitivities. Anticancer Research, 1998, 18, 695-9.	0.5	23
230	Radical scavenging compound J 811 inhibits hydrogen peroxide-induced death of cerebellar granule cells. , 1999, 56, 420-426.		22
231	From the nematode and mammals back to the pine tree: on the diversity and evolution of programmed cell death. Cell Death and Differentiation, 2002, 9, 867-869.	5.0	22
232	Systems biology approaches to develop innovative strategies for lung cancer therapy. Cell Death and Disease, 2014, 5, e1260-e1260.	2.7	22
233	Targeting succinate:ubiquinone reductase potentiates the efficacy of anticancer therapy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2065-2071.	1.9	22
234	Involvement of mitophagy in cisplatin-induced cell death regulation. Biological Chemistry, 2019, 400, 161-170.	1.2	22

#	Article	IF	CITATIONS
235	Structural characterization, solution stability, and potential health and environmental effects of the Nano-TiO2 bioencapsulation matrix and the model product of its biodegradation TiBALDH. RSC Advances, 2012, 2, 4228.	1.7	21
236	Cell death in cancer therapy of lung adenocarcinoma. International Journal of Developmental Biology, 2015, 59, 119-129.	0.3	21
237	High-LET radiation induces apoptosis in lymphoblastoid cell lines derived from ataxia-telangiectasia patients. International Journal of Radiation Biology, 2001, 77, 309-317.	1.0	20
238	Heat Shock Protein 72 Does Not Modulate Ionizing Radiation-Induced Apoptosis in U1810 Non-Small Cell Lung Carcinoma Cells. Cancer Biology and Therapy, 2003, 2, 662-668.	1.5	20
239	Targeting Hepatoma Using Nitric Oxide Donor Strategies. Antioxidants and Redox Signaling, 2013, 18, 491-506.	2.5	20
240	Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget, 2016, 7, 60332-60347.	0.8	20
241	PKC 412 sensitizes U1810 non-small cell lung cancer cells to DNA damage. Experimental Cell Research, 2005, 305, 200-213.	1.2	19
242	The Future of ToxicologyDoes It Matter How Cells Die?. Chemical Research in Toxicology, 2006, 19, 729-733.	1.7	19
243	Targeting mitochondria by α-tocopheryl succinate kills neuroblastoma cells irrespective of MycN oncogene expression. Cellular and Molecular Life Sciences, 2012, 69, 2091-2099.	2.4	19
244	Targeting Bcl-2 Family Proteins: What, Where, When?. Biochemistry (Moscow), 2020, 85, 1210-1226.	0.7	19
245	Anastasis: Return Journey from Cell Death. Cancers, 2021, 13, 3671.	1.7	19
246	Long non-coding RNAs: A view to kill ovarian cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188584.	3.3	19
247	5-Fluorouracil-induced RNA stress engages a TRAIL-DISC-dependent apoptosis axis facilitated by p53. Oncotarget, 2015, 6, 43679-43697.	0.8	19
248	Characteristics of Rat Thymus Chromatin Degradation Products after Whole-body X-irradiation. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1981, 39, 437-440.	1.0	18
249	Knock-Down of Core Proteins Regulating MicroRNA Biogenesis Has No Effect on Sensitivity of Lung Cancer Cells to Ionizing Radiation. PLoS ONE, 2012, 7, e33134.	1.1	18
250	Determining the contributions of caspase-2, caspase-8 and effector caspases to intracellular VDVADase activities during apoptosis initiation and execution. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2279-2292.	1.9	18
251	Suppressed translation as a mechanism of initiation of CASP8 (caspase 8)-dependent apoptosis in autophagy-deficient NSCLC cells under nutrient limitation. Autophagy, 2018, 14, 252-268.	4.3	18
252	Mitophagy in carcinogenesis and cancer treatment. Discover Oncology, 2021, 12, 58.	0.8	18

#	Article	IF	CITATIONS
253	Epiphyseal Fusion in the Human Growth Plate Does not Involve Classical Apoptosis. Pediatric Research, 2009, 66, 654-659.	1.1	17
254	Aspasing Out Metacaspases and Caspases: Proteases of Many Trades. Science Signaling, 2010, 3, pe48.	1.6	17
255	Protein Kinase C-Dependent Phosphorylation Regulates the Cell Cycle-Inhibitory Function of the p73 Carboxy Terminus Transactivation Domain. Molecular and Cellular Biology, 2009, 29, 1814-1825.	1.1	16
256	Caspase-2 promotes cytoskeleton protein degradation during apoptotic cell death. Cell Death and Disease, 2013, 4, e940-e940.	2.7	16
257	Caspase-2 as a master regulator of genomic stability. Trends in Cell Biology, 2021, 31, 712-720.	3.6	16
258	Targeting mitochondria by α-tocopheryl succinate overcomes hypoxia-mediated tumor cell resistance to treatment. Cellular and Molecular Life Sciences, 2014, 71, 2325-2333.	2.4	15
259	Contrasting effects of glutamine deprivation on apoptosis induced by conventionally used anticancer drugs. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 498-506.	1.9	15
260	Viral Infections: Negative Regulators of Apoptosis and Oncogenic Factors. Biochemistry (Moscow), 2020, 85, 1191-1201.	0.7	15
261	Ion Signalling in Apoptosis. , 1994, , 97-115.		15
262	The role of proteolysis in T cell apoptosis triggered by chelation of intracellular Zn2+. Cell Death and Differentiation, 1997, 4, 39-50.	5.0	14
263	Epstein-Barr virus-transformed lymphoblastoid cell lines of ataxia telangiectasia patients are defective in X-ray-induced apoptosis. International Journal of Radiation Biology, 1999, 75, 709-716.	1.0	14
264	Determination of Apoptosis and Necrosis. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 1999, 00, Unit 2.2.	1.1	14
265	Mitochondrial substrates in cancer: Drivers or passengers?. Mitochondrion, 2014, 19, 8-19.	1.6	14
266	Proteases in Fas-mediated apoptosis. Journal of Cellular Biochemistry, 1997, 64, 43-49.	1.2	13
267	Transcription factor GABP/NRF-2 controlling biogenesis of mitochondria regulates basal expression of peroxiredoxin V but the mitochondrial function of peroxiredoxin V is dispensable in the dog. Biochimie, 2011, 93, 306-313.	1.3	13
268	Contrasting effects of α-tocopheryl succinate on cisplatin- and etoposide-induced apoptosis. Mitochondrion, 2013, 13, 533-538.	1.6	13
269	Biodegradable Porous Silicon Nanocontainers as an Effective Drug Carrier for Regulation of the Tumor Cell Death Pathways. ACS Biomaterials Science and Engineering, 2019, 5, 6063-6071.	2.6	13
270	Caspase-2: an orphan enzyme out of the shadows. Oncogene, 2017, 36, 5441-5444.	2.6	13

#	Article	IF	CITATIONS
271	Apoptosis, necrosis and between. Cell Cycle, 2004, 3, 64-6.	1.3	13
272	Cell death-based treatment of various diseases: a fifty-year journey. Cell Death and Disease, 2018, 9, 110.	2.7	12
273	Analysis of Mitochondrial Dysfunction During Cell Death. Current Protocols in Cell Biology, 2003, 19, Unit 18.5.	2.3	11
274	Receptor-Mediated Mitophagy Rescues Cancer Cells under Hypoxic Conditions. Cancers, 2021, 13, 4027.	1.7	11
275	Determination of some nuclear deoxyribonucleases in X-irradiated rat thymocytes. Radiation and Environmental Biophysics, 1992, 31, 123-132.	0.6	10
276	Modulation of Mcl-1 transcription by serum deprivation sensitizes cancer cells to cisplatin. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 557-566.	1.1	10
277	Mitochondrial dysfunction is an essential step for killing of non-small cell lung carcinomas resistant to conventional treatment. Oncogene, 2002, 21, 65-77.	2.6	10
278	RasGTPase-activating protein is a target of caspases in spontaneous apoptosis of lung carcinoma cells and in response to etoposide. Carcinogenesis, 2004, 25, 909-921.	1.3	9
279	Polymorphic variations in apoptotic genes and cancer predisposition. Cell Death and Differentiation, 2005, 12, 1004-1007.	5.0	9
280	Mcl-1 as a "barrier―in cancer treatment: Can we target it now?. International Review of Cell and Molecular Biology, 2020, 351, 23-55.	1.6	9
281	Effects of 9-β-d-arabinofuranosylguanine on mitochondria in CEM T-lymphoblast leukemia cells. Biochemical and Biophysical Research Communications, 2003, 307, 942-947.	1.0	8
282	The HPV-16 E7 Oncogene Sensitizes Malignant Cells to IFN-α-Induced Apoptosis. Journal of Interferon and Cytokine Research, 2005, 25, 63-72.	0.5	8
283	Caspase-2: What do we know today?. Molecular Biology, 2013, 47, 165-180.	0.4	8
284	Analysis of Mitochondrial Dysfunction During Cell Death. Methods in Molecular Biology, 2015, 1264, 385-393.	0.4	8
285	Nuclear Protein Synthesis in Thymocytes of X-irradiated Rats. International Journal of Radiation Biology, 1988, 54, 999-1006.	1.0	7
286	Modeling hypoxia facilitates cancer cell survival through downregulation of p53 expression. Chemico-Biological Interactions, 2021, 345, 109553.	1.7	7
287	Heat shock protein 72 does not modulate ionizing radiation-induced apoptosis in U1810 non-small cell lung carcinoma cells. Cancer Biology and Therapy, 2003, 2, 663-9.	1.5	7
288	Effects of serum from patients with type 1 diabetes on primary cerebellar granule cells. Diabetes, 2001, 50, S77-S81.	0.3	6

#	Article	IF	CITATIONS
289	Hsp72 mediates TAp73α anti-apoptotic effects in small cell lung carcinoma cells. Journal of Cellular and Molecular Medicine, 2011, 15, 1757-1768.	1.6	6
290	Reactive oxygen species regulate a balance between mitotic catastrophe and apoptosis. International Journal of Biochemistry and Cell Biology, 2016, 81, 133-136.	1.2	6
291	Distinct effects of etoposide on glutamine-addicted neuroblastoma. Cellular and Molecular Life Sciences, 2020, 77, 1197-1207.	2.4	6
292	Upregulation of Mcl-1S Causes Cell-Cycle Perturbations and DNA Damage Accumulation. Frontiers in Cell and Developmental Biology, 2020, 8, 543066.	1.8	6
293	BNIP3 as a Regulator of Cisplatin-Induced Apoptosis. Biochemistry (Moscow), 2020, 85, 1245-1253.	0.7	6
294	Analysis of Mitochondrial Dysfunction During Cell Death. Methods in Molecular Biology, 2021, 2276, 215-225.	0.4	6
295	Degree of Chromatin Fragmentation and Frequency of Nuclear Pyknosis in Percoll-fractionated Thymocytes of Irradiated Rats. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1987, 51, 421-428.	1.0	5
296	The Potential Role of Apoptosis in Human Disease. Medical Principles and Practice, 2000, 9, 151-163.	1.1	5
297	More Than One Road to Kill Tumor Cells: Why Are They Not Always Successful?. Cell Cycle, 2003, 2, 31-33.	1.3	5
298	Clinical perspectives of cell death: where we are and where to go…. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 333-335.	2.2	5
299	Systems biology: a way to make complex problems more understandable. Cell Death and Disease, 2014, 5, e1256-e1256.	2.7	5
300	Contrasting effects of cardiac glycosides on cisplatin- and etoposide-induced cell death. Biological Chemistry, 2016, 397, 661-670.	1.2	5
301	Comprehensive Map of the Regulated Cell Death Signaling Network: A Powerful Analytical Tool for Studying Diseases. Cancers, 2020, 12, 990.	1.7	5
302	Optical Monitoring of the Biodegradation of Porous and Solid Silicon Nanoparticles. Nanomaterials, 2021, 11, 2167.	1.9	5
303	Aberrant DR5 transport through disruption of lysosomal function suggests a novel mechanism for receptor activation. Oncotarget, 2016, 7, 58286-58301.	0.8	5
304	Response to radiotherapy of human uterine cervix carcinoma is not correlated with rearrangements of the HA-ras-1 and/or c-myc genes. European Journal of Cancer, 1997, 33, 942-949.	1.3	4
305	Participation of FLIP, RIP and Bcl-xLin Fas-mediated T-cell Death. Scandinavian Journal of Immunology, 2007, 66, 410-421.	1.3	4
306	Etoposide and Hypoxia Do Not Activate Apoptosis of Multipotent Mesenchymal Stromal Cells In Vitro. Bulletin of Experimental Biology and Medicine, 2012, 154, 141-144.	0.3	4

#	Article	IF	CITATIONS
307	Sensitization of (colon) cancer cells to death receptor related therapies. Cancer Biology and Therapy, 2012, 13, 458-466.	1.5	4
308	Mitochondria — a bullseye in cancer therapy. Mitochondrion, 2014, 19, 1-2.	1.6	4
309	Nutrient restriction in combinatory therapy of tumors. Molecular Biology, 2016, 50, 362-378.	0.4	4
310	Requirement for Serine-384 in Caspase-2 processing and activity. Cell Death and Disease, 2020, 11, 825.	2.7	4
311	Necroptosis as a Novel Facet of Mitotic Catastrophe. International Journal of Molecular Sciences, 2022, 23, 3733.	1.8	4
312	Bak and Bcl-xL Participate in Regulating Sensitivity of Solid Tumor Derived Cell Lines to Mcl-1 Inhibitors. Cancers, 2022, 14, 181.	1.7	4
313	Fluorometric measurement of DNA reassociation kinetics. Analytical Biochemistry, 1979, 94, 121-124.	1.1	3
314	Effect of Gamma-irradiation on DNA-dependent RNA Polymerase Activity in Rat Thymus Cells. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1982, 42, 199-204.	1.0	3
315	Current Concepts in Cell Death. Current Protocols in Cell Biology, 2001, 11, Unit 18.1.	2.3	3
316	New Methodology Is a Key to Progress. Cell Cycle, 2002, 1, 110-112.	1.3	3
317	Inhibition of P-glycoprotein stimulates cell death under Hypoxia-mimicking conditions. Doklady Biochemistry and Biophysics, 2017, 472, 27-30.	0.3	3
318	Publisher's Note: Chromosomal breaks during mitotic catastrophe trigger γH2AX–ATM–p53-mediated apoptosis. Gabriela Imreh, Helin Vakifahmetoglu Norberg, Stefan Imreh, Boris Zhivotovsky. J. Cell Sci. doi: 10.1242/jcs.081612. Journal of Cell Science, 2017, 130, 3418.	1.2	3
319	A caspase-2-RFXANK interaction and its implication for MHC class II expression. Cell Death and Disease, 2018, 9, 80.	2.7	3
320	Proteases in Fas-mediated apoptosis. Journal of Cellular Biochemistry, 1997, 64, 43-9.	1.2	3
321	Reassociation Kinetics of DNA from X-irradiated Ascites Hepatoma Cells of the Rat. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1975, 28, 453-459.	1.0	2
322	Effect of X-irradiation on the Hybridization of Rat Thymus Nuclear RNA with Repeated and Unique DNA Sequences. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1976, 30, 129-139.	1.0	2
323	Distribution of Nuclease Attack Sites and Complexity of DNA in the Products of Post-irradiation Degradation of Rat Thymus Chromatin. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1983, 44, 261-266.	1.0	2
324	Apoptosis and cancer: where we are and where to go $\hat{a} \in $. Seminars in Cancer Biology, 2003, 13, 93-95.	4.3	2

#	Article	IF	CITATIONS
325	Analysis of Mitochondrial Dysfunction During Cell Death. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2004, 19, Unit2.10.	1.1	2
326	Understanding Different Types of Cell Death Using Systems Biology. , 2012, , 125-143.		2
327	Correction: PRIMA-1MET induces mitochondrial apoptosis through activation of caspase-2. Oncogene, 2017, 36, 3650-3650.	2.6	2
328	Programmed Cell Death: Historical Notes from Russia. Biochemistry (Moscow), 2020, 85, 1127-1133.	0.7	2
329	Nutrient Deprivation Promotes MCL-1 Degradation in an Autophagy-Independent Manner. Biochemistry (Moscow), 2020, 85, 1235-1244.	0.7	2
330	Nonresonant CARS Imaging of Porous and Solid Silicon Nanoparticles in Human Cells. ACS Biomaterials Science and Engineering, 2022, 8, 4185-4195.	2.6	2
331	Systems Biology Analysis of Cell Death Pathways in Cancer: How Collaborative and Interdisciplinary Research Helps. , 2011, , 267-296.		1
332	Different Modes of Cell Death Induced by DNA Damage. Issues in Toxicology, 2012, , 239-265.	0.2	1
333	Caspase-2 associates with FAN through direct interaction and overlapping functionality. Biochemical and Biophysical Research Communications, 2018, 499, 822-828.	1.0	1
334	Radical scavenging compound J 811 inhibits hydrogen peroxideâ€induced death of cerebellar granule cells. Journal of Neuroscience Research, 1999, 56, 420-426.	1.3	1
335	Measurement of Caspase Activation in Mammalian Cell Cultures. Methods in Molecular Biology, 2014, 1133, 155-173.	0.4	1
336	Mechanisms of Interferon-alpha induced apoptosis in malignant cells. , 0, .		1
337	Induction and Detection of. Methods in Molecular Biology, 2022, 2445, 227-239.	0.4	1
338	Caspase-2 is a mediator of apoptotic signaling in response to gemtuzumab ozogamicin in acute myeloid leukemia. Cell Death Discovery, 2022, 8, .	2.0	1
339	Current Concepts in Cell Toxicity. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 1999, 00, Unit 2.1.	1.1	Ο
340	Guarding the Bcl-2 Army. Cancer Biology and Therapy, 2004, 3, 348-350.	1.5	0
341	Mitochondria and Oxidation in the Regulation of Cell Death. , 2005, , 381-401.		0
342	Do checkpoint kinases contribute to HIV-1–mediated apoptosis?. Cell Cycle, 2009, 8, 335-337.	1.3	0

#	Article	IF	CITATIONS
343	Yl1 Gene expression profiling of day 7 erythroblasts from refractory anemia with ringed sideroblasts (RARS) and microarray-based identification of erythroid granulocyte-CSF (G-CSF) targets. Leukemia Research, 2009, 33, S55.	0.4	0
344	2010—Celebrating two birthdays. Experimental Cell Research, 2010, 316, 1283.	1.2	0
345	525 Global gene analysis reveals ephrin B3 as a potential radio sensitizing target in non small cell lung cancer cells. European Journal of Cancer, Supplement, 2010, 8, 134.	2.2	0
346	Back to Stockholm for â€~metabolism, epigenetics and cell death'. Cell Death and Differentiation, 2012, 19, 909-912.	5.0	0
347	Mitochondrial Involvement in the Execution of Cell Death. Oxidative Stress and Disease, 2012, , 13-33.	0.3	0
348	Introduction to Nobel Conference: †The Cell Cycle and Cell Death in Disease'. Journal of Internal Medicine, 2017, 281, 418-421.	2.7	0
349	On Sten Orrenius (1937–2020). Cell Death and Differentiation, 2020, 27, 2744-2745.	5.0	0
350	Erythropoiesis Is Highly Stimulated in CD34+ Cells in Low-Risk Myelodysplastic Syndromes (MDS) with an Improper Mitochondrial Function Blood, 2004, 104, 473-473.	0.6	0
351	Abstract 4882: Downregulation of core component of miRNA machinery, Tudor-SN, impedes NSCLC resistance to chemotherapy. , 2012, , .		0
352	Abstract 833: S100A4 interacts with p53 in the nucleus promoting its degradation , 2013, , .		0
353	A Balance Between Autophagy and Other Cell Death Modalities in Cancer. Methods in Molecular Biology, 2022, 2445, 3-24.	0.4	0