Francesco Calogero

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3466786/publications.pdf
Version: 2024-02-01

Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte1 Chemie - International Edition, 2022, 61, .7.2A Photoredox Nozakiâ€Hiyama Reaction Catalytic in Chromium. European Journal of Organic Chemistry,2022, 2022, .
$7 \quad$ Photoredox Propargylation of Aldehydes Catalytic in Titanium. Journal of Organic Chemistry, 2021, 86, 7002-7009.$1.7 \quad 18$8 Solution of the System of Two Coupled First-Order ODEs with Second-Degree Polynomial Right-HandSides. Mathematical Physics Analysis and Geometry, 2021, 24, 1.
Two Peculiar Classes of Solvable Systems Featuring 2 Dependent Variables Evolving in Discrete-Time
15 via 2 Nonlinearly-Coupled First-Order Recursion Relations. Journal of Nonlinear Mathematical 0.8
Physics, 2019, 26, 509.

Solvable Systems Featuring 2 Dependent Variables Evolving in Discrete-Time via 2 Nonlinearly-Coupled
20 First-Order Recursion Relations with Polynomial Right-Hand Sides. Journal of Nonlinear Mathematical

21	A HELIXOLâ€Derived Bisphosphinite Ligand: Synthesis and Application in Goldâ€Catalyzed Enynes Cycloisomerization. European Journal of Organic Chemistry, 2019, 2019, 2129-2137.	1.2	9
22	Isochronous solutions of Einsteinâ $€^{T M} s$ equations and their Newtonian limit. International Journal of Geometric Methods in Modern Physics, 2018, 15, 1850101.	0.8	1
23	Examples of Hamiltonians isochronous in configuration space only and their quantization. Journal of Mathematical Physics, 2018, 59, 062701.	0.5	11
24	Zeros of Entire Functions and Related Systems of Infinitely Many Nonlinearly Coupled Evolution Equations. Theoretical and Mathematical Physics(Russian Federation), 2018, 196, 1111-1128.	0.3	12
25	Solvable nonlinear discrete-time evolutions and Diophantine findings. Journal of Nonlinear Mathematical Physics, 2018, 25, 515.	0.8	0
26	Zeros of rational functions and solvable nonlinear evolution equations. Journal of Mathematical Physics, 2018, 59, .	0.5	4
27	Simple Extensions of the Lotka-Volterra Prey-Predator Model. Mathematical Intelligencer, 2018, 40, 16-19.	0.1	0

Finite and infinite systems of nonlinearly-coupled ordinary differential equations, the solutions of
which feature remarkable Diophantine findings. Journal of Nonlinear Mathematical Physics, 2018, 25,
433.

$$
\begin{aligned}
& 29 \text { Generations of solvable discrete-time dynamical systems. Journal of Mathematical Physics, 2017, 58, } \\
& 052701 \text {. }
\end{aligned}
$$

$0.5 \quad 16$

30 Novel differential algorithm to evaluate all the zeros of any generic polynomial. Journal of
0.8

14
Nonlinear Mathematical Physics, 2017, 24, 469.
.

Yet Another Class of New Solvable N-Body Problems of Goldfish Type. Qualitative Theory of Dynamical
$0.8 \quad 16$
Systems, 2017, 16, 561-577.

The peculiar (monic) polynomials, the zeros of which equal their coefficients. Journal of Nonlinear Mathematical Physics, 2017, 24, 545.

Three New Classes of Solvable N-Body Problems of Goldfish Type with Many Arbitrary Coupling
1.1

18
$33 \quad$ Constants. Symmetry, 2016, 8, 53.

Comment on â€œNonlinear differential algorithm to compute all the zeros of a generic polynomialâ $€ \cdot[\mathrm{~J}$.
34 Math. Phys. 57, 083508 (2016)]. Journal of Mathematical Physics, 2016, 57, 104101.

\#	Article	IF	Citation	
37	A convenient expression of the time-derivative $\mathrm{zn}(\mathrm{k})(\mathrm{t})$, of arbitrary order $\langle\mathrm{i}\rangle \mathrm{k}</ \mathrm{i}\rangle$, of the zero $\langle\mathrm{i}\rangle z$ <sub>n<\|sub> <	i> (<i>t<\|i>) of a time-dependent polynomial <i>p <sub>N $/$ sub> <\|i> (<i>z<\|i>; <i>t<\|i>) of arbitrary degree <i> $\mathrm{N}</ \mathrm{i}\rangle$ in $\langle i\rangle z</ i\rangle$, and solvable dynamical systems. Journal of Nonlinear Mathematical Phvsics. 2016, 23, 474.	0.8	20
38	Integrable Hamiltonian N -body problems of goldfish type featuring N arbitrary functions. Journal of Nonlinear Mathematical Physics, 2016, 24, 1.	0.8	14	
39			15	

40 Some matrix functional equations. Theoretical and Mathematical Physics(Russian Federation), 2016,
189, 1411-1429.
Generations of Monic Polynomials such that the Coefficients of Each Polynomial of the Next
43 Generation Coincide with the Zeros of a Polynomial of the Current Generation, 0.5 25A Solvable N-body Problem of Goldfish Type Featuring N2 Arbitrary Coupling Constants. Journal ofA Solvable N-body Problem of Goldfish Type Featuring N2 Arbitrary Coupling Constants. Journal of 0.8$0.8 \quad 20$
44 Nonlinear Mathematical Physics, 2016, 23, 300.
$0.8 \quad 25$
46 More, or less, trivial matrix functional equations. Aequationes Mathematicae, 2016, 90, 541-557.
$0.4 \quad 2$
47 A new solvable many-body problem of goldï̄sh type. Journal of Nonlinear Mathematical Physics, 2016, 23, 28.
0.8 15
Properties of the zeros of the polynomials belonging to the q-Askey scheme. Journal of MathematicalAnalysis and Applications, 2016, 433, 525-542.$0.5 \quad 6$
$0.5 \quad 2$

Properties of the zeros of generalized basic hypergeometric polynomials. Journal of Mathematical Physics, 2015, 56, 112701.

50 Isochronous spacetimes and cosmologies. Journal of Physics: Conference Series, 2015, 626, 012004.
51 Isochronous Spacetimes. Acta Applicandae Mathematicae, 2015, 137, 3-16. 0.5
3
$55 \quad$ Isochronous cosmologies. International Journal of Geometric Methods in Modern Physics, 2014, 11,
1450054.

A nonautonomous yet solvable discrete-time<i>N</i>-body problem. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 105203.

Properties of the Zeros of the Polynomials Belonging to the Askey Scheme. Letters in Mathematical
Physics, 2014, 104, 1571-1588.

Many-Body Problem with Quadratic and/or Inversely-Quadratic Potentials in One- and
More-Dimensional Spaces: Some Retrospective Remarks. Journal of Statistical Physics, 2014, 155, 658-665.
0.5

Properties of the zeros of generalized hypergeometric polynomials. Journal of Mathematical Analysis
0.5 and Applications, 2014, 419, 1076-1094.

A Macroscopic System with Undamped Periodic Compressional Oscillations. Journal of Statistical
Physics, 2013, 151, 922-937.
0.5

Polynomials Satisfying Functional and Differential Equations and Diophantine Properties of Their
Zeros. Letters in Mathematical Physics, 2013, 103, 629-651.
0.5

On the Zeros of Polynomials Satisfying Certain Linear Second-Order ODEs Featuring Many Free
Parameters. Journal of Nonlinear Mathematical Physics, 2013, 20, 191.

Properties of the zeros of the sum of three polynomials. Journal of Nonlinear Mathematical Physics,
2013, 20, 469.

Equilibria of a solvable N-body problem and related properties of the N numbers $\times \mathrm{n}$ at which the
64 Jacobi polynomial of order N has the same value. Journal of Nonlinear Mathematical Physics, 2013, 20, 539.

New solvable discrete-time many-body problem featuring several arbitrary parameters. II. Journal of
Mathematical Physics, 2013,54, 102702.
0.5

14

Diophantine Properties Associated to the Equilibrium Configurations of an Isochronous <i> $\mathrm{N}<|\mathrm{i}\rangle$-Body Problem. Journal of Nonlinear Mathematical Physics, 2013, 20, 158.

Properties of the Zeros of the Sum of two Polynomials. Journal of Nonlinear Mathematical Physics, 2013, 20, 348.

Can the<i>general</i>solution of the second-order ODE characterizing Jacobi polynomials be<i>polynomial</i>?. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 095206.

New solvable discrete-time many-body problem featuring several arbitrary parameters. Journal of Mathematical Physics, 2012, 53, .

TWO QUITE SIMILAR MATRIX ODES AND THE MANY-BODY PROBLEMS RELATED TO THEM. International Journal of Geometric Methods in Modern Physics, 2012, 09, 1260002.
73 New Solvable Many-Body Model of Goldfish Type. Journal of Nonlinear Mathematical Physics, 2012, 19,
62 .

$74 \quad$| Diophantine properties of the zeros of certain Laguerre and para-Jacobi polynomials. Journal of |
| :--- |
| Physics A: Mathematical and Theoretical, 2012, 45, 095207. |

$75 \quad$| Another new goldfish model. Theoretical and Mathematical Physics(Russian Federation), 2012, 171, |
| :--- |
| 629-640. |

76 A New Class of Solvable Many-Body Problems. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 2012, , .
$0.5 \quad 2$

77 | Isochronous dynamical systems. Philosophical Transactions Series A, Mathematical, Physical, and |
| :--- |
| Engineering Sciences, 2011, 369, 1118-1136. |

$1.6 \quad 14$
Engineering Sciences, 2011, 369, 1118-1136.
$0.7 \quad 0$
2011, 49, 870-879.
79 Isochronous Systems, the Arrow of Time, and the Definition of Deterministic Chaos. Letters in 0.5
6
80 A new goldfish model. Theoretical and Mathematical Physics(Russian Federation), 2011, 167, 714-724. 0.3 22
81 An integrable many-body problem. Journal of Mathematical Physics, 2011, 52, 102702. 0.5 5
An Invertible Transformation and Some of its Applications. Journal of Nonlinear MathematicalPhysics, 2011, 18, 1.
0.8 6
83 Discrete-Time Goldfishing. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 2011, , . 0.5 19
$\hat{a} € œ E x a c t ~ s o l u t i o n ~ o f ~ N-d i m e n s i o n a l ~ r a d i a l ~ S c h r A ̃ ๆ d i n g e r ~ e q u a t i o n ~ f o r ~ t h e ~ f o u r t h-o r d e r ~ i n v e r s e-p o w e r ~$ potential". European Physical Journal D, 2010, 57, 1-1. 0.6 0
84Isochronous Oscillators. Journal of Nonlinear Mathematical Physics, 2010, 17, 103.0.82
Isochronous rate equations describing chemical reactions. Journal of Physics A: Mathematical and 0.7 3
87 Theoretical, 2010, 43, 434010.

How to Extend any Dynamical System so That it Becomes Isochronous, Asymptotically Isochronous or
Multi-Periodic. Journal of Nonlinear Mathematical Physics, 2009, 16, 311 .

How to embed an arbitrary Hamiltonian dynamics in a superintegrable (or just integrable) Hamiltonian dynamics. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 145202.

An isochronous variant of the Ruijsenaarsâ $\epsilon_{\text {"Toda model: equilibrium configurations, behavior in their }}$
93 neighborhood, Diophantine relations. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 445207.

Towards a theory of chaos explained as travel on Riemann surfaces. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 015205.
0.7

New evolution PDEs with many isochronous solutions. Journal of Mathematical Analysis and
Applications, 2009, 353, 481-488.
$0.5 \quad 0$

96 Remembering Yakov Abramovich Smorodinsky. Physics of Atomic Nuclei, 2009, 72, 886-887.
0.10

Integrability, analyticity, isochrony, equilibria, small oscillations, and Diophantine relations: results
97 from the stationary Burgers hierarchy. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 475202.

Short-time PoincarÃ© recurrence in a broad class of many-body systems. Journal of Statistical
Mechanics: Theory and Experiment, 2009, 2009, P02022.

Integrability, analyticity, isochrony, equilibria, small oscillations, and Diophantine relations: Results
from the stationary Korteweg-de Vries hierarchy. Journal of Mathematical Physics, 2009, 50, 122701.

Isochronous Dynamical System and Diophantine Relations I. Journal of Nonlinear Mathematical
Physics, 2009, 16, 105.

101 Examples of isochronous Hamiltonians: classical and quantal treatments. Journal of Physics A:
101 Mathematical and Theoretical, 2008, 41, 175202.
0.7

14

Spontaneous reversal of irreversible processes in a many-body Hamiltonian evolution. New Journal of Physics, 2008, 10, 023042.
1.2

8

A new class of isochronous dynamical systems. Journal of Physics A: Mathematical and Theoretical,
2008, 41, 295101.
$0.7 \quad 5$

104 Asymptotically isochronous systems. Journal of Nonlinear Mathematical Physics, 2008, 15, 410.
0.8

27

105 ISOCHRONOUS PDEs. , 2008, , 188-210.
5

General technique to produce isochronous Hamiltonians. Journal of Physics A: Mathematical and

109 \begin{tabular}{l}
Tridiagonal matrices, orthogonal polynomials and Diophantine relations: Il. Journal of Physics A:

Mathematical and Theoretical, 2007, 40, 14759-14772.

\quad

On a new technique to manufacture isochronous Hamiltonian systems: classical and quantal

treatments. Journal of Nonlinear Mathematical Physics, 2007, 14, 612-636.
\end{tabular}

111 Isochronous systems and their quantization. Theoretical and Mathematical Physics(Russian) Tj ETQq1 10.784314 rgBT /Overlock 10

On isochronous Shabatâ $€$ "Yamilovâ€"Toda lattices: Equilibrium configurations, behavior in their
112 neighborhood, diophantine relations and conjectures. Physics Letters, Section A: General, Atomic and
$0.9 \quad 8$ Solid State Physics, 2006, 355, 262-270.

113 New integrable PDEs of boomeronic type. Journal of Physics A, 2006, 39, 8349-8376. 10

114 On a class of Hamiltonians with (classical) isochronous motions and (quantal) equi-spaced spectra.
1.6

Journal of Physics A, 2006, 39, 11803-11824.

On isochronous Bruschiâ€"Ragniscoâ€"Ruijsenaarsâ€"Toda lattices: equilibrium configurations, behaviour
in their neighbourhood, diophantine relations and conjectures. Journal of Physics A, 2006, 39, 313-325.
1.6

10

116 Goldfishing by gauge theory. Journal of Mathematical Physics, 2006, 47, 082702.
0.5
022703.
0.5

13

118 Isochronous and partially isochronous Hamiltonian systems are not rare. Journal of Mathematical
Physics, 2006, 47, 042901.
0.5

11

119 Goldfishing: A new solvable many-body problem. Journal of Mathematical Physics, 2006, 47, 102701.
0.5

4

120 Isochronous dynamical systems. Applicable Analysis, 2006, 85, 5-22.
0.6

10

121 Novel solution of the system describing the resonant interaction of three waves. Physica D:
Nonlinear Phenomena, 2005, 200, 242-256.
1.3

35

122 Isochronous PDEs. Physics of Atomic Nuclei, 2005, 68, 899-908.
$0.1 \quad 3$

> 123 A modified Schwarzian Korteweg-de Vries equation in $2+1$ dimensions with lots of isochronous solutions. Physics of Atomic Nuclei, 2005, 68, 1646-1653.
$0.1 \quad 4$

The transition from regular to irregular motions, explained as travel on Riemann surfaces. Journal of
Physics A, 2005, 38, 8873-8896.
1.6

46

Novel solvable extensions of the goldfish many-body model. Journal of Mathematical Physics, 2005, 46,
103515.
0.5

25

```
New Integrable Equations of Nonlinear Schrodinger Type. Studies in Applied Mathematics, 2004, 113,
91-137.
```

Lower limit in semiclassical form for the number of bound states in a central potential. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 321, 225-230.

Convenient parameterizations of matrices in terms of vectors. Physics Letters, Section A: General,
Atomic and Solid State Physics, 2004, 327, 312-319.

Integrable systems of quartic oscillators II. Physics Letters, Section A: General, Atomic and Solid State
Physics, 2004, 327, 320-326.

Two New Classes of Isochronous Hamiltonian Systems. Journal of Nonlinear Mathematical Physics,
2004, 11, 208.

A technique to identify solvable dynamical systems, and a solvable generalization of the goldfish many-body problem. Journal of Mathematical Physics, 2004, 45, 2266-2279.

Solution of the Goldfish N-Body Problem in the Plane with (Only) Nearest-Neighbor Coupling
Constants All Equal to Minus One Half. Journal of Nonlinear Mathematical Physics, 2004, 11, 102.
0.8

A technique to identify solvable dynamical systems, and another solvable extension of the goldfish many-body problem. Journal of Mathematical Physics, 2004, 45, 4661-4678.

On the quantization of Newton-equivalent Hamiltonians. American Journal of Physics, 2004, 72,
1202-1203.

Partially Superintegrable (Indeed Isochronous) Systems are not Rare. , 2004, , 49-77.
7

Isochronous motions galore: Nonlinearly coupled oscillators with lots of isochronous solutions.
CRM Proceedings \& Lecture Notes, 2004, , 15-27.
$0.1 \quad 9$

Nonlinear Evolution ODEs Featuring Many Periodic Solutions. Theoretical and Mathematical
Physics(Russian Federation), 2003, 137, 1663-1675.

Cool irrational numbers and their rather cool rational approximations. Mathematical Intelligencer, 2003, 25, 72-76.

On the quantization of two other nonlinear harmonic oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 319, 240-245.

A class of ($\hat{\mathrm{a}}$, " ${ }^{\prime}$-dependent) potentials with the same number of ($\hat{\mathrm{a}}_{,}$""-wave) bound states. Physics Letters,
Section A: General, Atomic and Solid State Physics, 2003, 312, 16-20.

On the quantization of a nonlinear Hamiltonian oscillator. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 313, 356-362.

A further solvable three-body problem in the plane. Journal of Mathematical Physics, 2003, 44,
5159-5165.
0.5

\#	Article	IF	
145	Upper and lower limits for the number of S-wave bound states in an attractive potential. Journal of Mathematical Physics, 2003, 44, 1554-1575.	0.5	28
146	Periodic Solutions of a Many-Rotator Problem in the Plane. II. Analysis of Various Motions. Journal of Nonlinear Mathematical Physics, 2003, 10, 157.	0.8	30
147	Upper and lower limits on the number of bound states in a central potential. Journal of Physics A, 2003, 36, 12021-12063.	1.6	16
148	Differential equations featuring many periodic solutions. , 2003, , 9-20.		10
149	Periodic Motions Galore: How to Modify Nonlinear Evolution Equations so that They Feature a Lot of Periodic Solutions. Journal of Nonlinear Mathematical Physics, 2002, 9, 99.	0.8	25
150	On a modified version of a solvable ODE due to PainlevÃ©. Journal of Physics A, 2002, 35, 985-992.	1.6	13
151	A complex deformation of the classical gravitational many-body problem that features many completely periodic motions. Journal of Physics A, 2002, 35, 3619-3627.	1.6	17
152	Periodic Solutions of a System of Complex ODEs. II. Higher Periods. Journal of Nonlinear Mathematical Physics, 2002, 9, 483.	0.8	18
153	Nonlinear harmonic oscillators. Journal of Physics A, 2002, 35, 10365-10375.	1.6	27
154	On modified versions of some solvable ordinary differential equations due to Chazy. Journal of Physics A, 2002, 35, 4249-4256.	1.6	12
155	Periodic solutions of a system of complex ODEs. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 293, 146-150.	0.9	22

6 Solvable Three-Body Problem and PainlevÃ© Conjectures. Theoretical and Mathematical Physics(Russian) Tj ETQq0 0.0 rgBT/Qverlock 1
156

Solvable Three-Body Problem and PainlevÃ Conjectures. Theoretical and Mathematical Physics(Russian) ijerqqo. 3 亿gbT 13

157	The neatest many-body problem amenable to exact treatments (a â€œgoldfishâ€?). Physica D: Nonlinear Phenomena, 2001, 152-153, 78-84.	1.3	77
158	The ABCs of Magnetic Monopole Dynamics. Theoretical and Mathematical Physics(Russian Federation), 2001, 128, 835-844.	0.3	2
159	Periodic solutions of a many-rotator problem in the plane. Inverse Problems, 2001, 17, 871-878.	1.0	28
160	Classical Many-Body Problems Amenable to Exact Treatments. Lecture Notes in Physics Monographs, 2001, , .	0.5	191
161	Integrable systems of quartic oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 273, 173-182.	0.9	10
162	On the integrability of certain matrix evolution equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 273, 167-172.	0.9	7

5810-5831.
171 Universality and integrability of the nonlinear evolution PDEâ $€^{T M} s$ describing Nâ€wave interactions.
173 The Lax representation for an integrable class of relativistic dynamical systems. Communications in
$1.0 \quad 46$
174 Disproof of a conjecture. Lettere Al Nuovo Cimento Rivista Internazionale Della SocietÃ Italiana Di Fisica, 1982, 35, 181-185.
$0.4 \quad 2$
175 Rational solutions of the KdV equation with damping. Lettere Al Nuovo Cimento Rivista Internazionale Della SocietÃ Italiana Di Fisica, 1979, 24, 97-100.

181	Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron. Lettere Al Nuovo Cimento Rivista Internazionale Della SocietÂ Italiana Di Fisica, 1976, 16, 425-433.	0.4	104
182	BÃcklund transformations, nonlinear superposition principle, multisoliton solutions and conserved quantities for the Â« boomeron Â» nonlinear evolution equation. Lettere Al Nuovo Cimento Rivista Internazionale Della SocietÂ Italiana Di Fisica, 1976, 16, 434-438.	0.4	42
183	On a functional equation connected with integrable many-body problems. Lettere Al Nuovo Cimento Rivista Internazionale Della Societê İtaliana Dí Fisica, 1976, 16, 77-80.	0.4	61
184	Exactly solvable one-dimensional many-body problems. Lettere Al Nuovo Cimento Rivista Internazionale Della SocietÂ Italiana Di Fisica, 1975, 13, 411-416.	0.4	320
185	Solution of the Oneâ€Dimensional Nâ€Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials. Journal of Mathematical Physics, 1971, 12, 419-436.	0.5	1,136
186	Necessary conditions for saturation of nuclear forces. Lettere Al Nuovo Cimento Rivista Internazionale Della SocietÂ Italiana Di Fisica, 1970, 4, 219-225.	0.4	10
187	Solution of a Threeâ€Body Problem in One Dimension. Journal of Mathematical Physics, 1969, 10, 2191-2196.	0.5	913

188 Parameter-Dependent Monic Polynomials: Definitions, Key Formulas and Other Preliminaries. , 0, , 4-25.

$$
189 \text { A Differential Algorithm to Compute All the Zeros of a Generic Polynomial. , 0, , 26-33. }
$$

Solvable and Integrable Nonlinear Dynamical Systems: Mainly Newtonian N-Body Problems in the Plane.
, 0, , 34-109.

191 Solvable Systems of Nonlinear Partial Differential Equations (PDEs). , 0, , 110-118.
0

192 Generations of Monic Polynomials. , 0, , 119-142.
o

193 Discrete Time. , 0, , 143-159.

0

194 Explicitly solvable systems of two autonomous first-order Ordinary Differential Equations with

