Francesco Calogero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3466786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	13.8	32
2	A Photoredox Nozakiâ€Hiyama Reaction Catalytic in Chromium. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4
3	Solution of the initial-value problem of first-order nonlinear recursions with homogeneous right-hand sides. Journal of Mathematical Physics, 2022, 63, .	1.1	2
4	Dual Photoredox and Nickel Catalysed Reductive Coupling of Alkynes and Aldehydes. Advanced Synthesis and Catalysis, 2022, 364, 3410-3419.	4.3	7
5	Solvable systems of two coupled first-order ODEs with homogeneous cubic polynomial right-hand sides. Journal of Mathematical Physics, 2021, 62, 012701.	1.1	4
6	Metallaphotoredox catalysis with organic dyes. Organic and Biomolecular Chemistry, 2021, 19, 3527-3550.	2.8	44
7	Photoredox Propargylation of Aldehydes Catalytic in Titanium. Journal of Organic Chemistry, 2021, 86, 7002-7009.	3.2	18
8	Solution of the System of Two Coupled First-Order ODEs with Second-Degree Polynomial Right-Hand Sides. Mathematical Physics Analysis and Geometry, 2021, 24, 1.	1.0	3
9	Asymmetric Reactions Enabled by Cooperative Enantioselective Amino- and Lewis Acid Catalysis. Topics in Current Chemistry, 2020, 378, 1.	5.8	74
10	A supramolecular bifunctional iridium photoaminocatalyst for the enantioselective alkylation of aldehydes. Dalton Transactions, 2020, 49, 14497-14505.	3.3	4
11	New algebraically solvable systems of two autonomous first-order ordinary differential equations with purely quadratic right-hand sides. Journal of Mathematical Physics, 2020, 61, 102704.	1.1	7
12	Cp ₂ TiCl ₂ -Catalyzed Photoredox Allylation of Aldehydes with Visible Light. ACS Catalysis, 2020, 10, 3857-3863.	11.2	55
13	Asymmetric Reactions Enabled by Cooperative Enantioselective Amino‑ and Lewis Acid Catalysis. Topics in Current Chemistry Collections, 2020, , 29-65.	0.5	0
14	Time-Dependent Polynomials with One Double Root, and Related New Solvable Systems of Nonlinear Evolution Equations. Qualitative Theory of Dynamical Systems, 2019, 18, 153-181.	1.7	17
15	Two Peculiar Classes of Solvable Systems Featuring 2 Dependent Variables Evolving in Discrete-Time via 2 Nonlinearly-Coupled First-Order Recursion Relations. Journal of Nonlinear Mathematical Physics, 2019, 26, 509.	1.3	1
16	Some algebraically solvable two-dimensional dynamical systems with polynomial interactions. Journal of Physics: Conference Series, 2019, 1275, 012062.	0.4	1
17	Polynomials with multiple zeros and solvable dynamical systems including models in the plane with polynomial interactions. Journal of Mathematical Physics, 2019, 60, 082701.	1.1	4
18	Al(Salen) Metal Complexes in Stereoselective Catalysis. Molecules, 2019, 24, 1716.	3.8	33

#	Article	IF	CITATIONS
19	Allylation of aldehydes by dual photoredox and nickel catalysis. Chemical Communications, 2019, 55, 6838-6841.	4.1	40
20	Solvable Systems Featuring 2 Dependent Variables Evolving in Discrete-Time via 2 Nonlinearly-Coupled First-Order Recursion Relations with Polynomial Right-Hand Sides. Journal of Nonlinear Mathematical Physics, 2019, 26, 273.	1.3	3
21	A HELIXOLâ€Derived Bisphosphinite Ligand: Synthesis and Application in Goldâ€Catalyzed Enynes Cycloisomerization. European Journal of Organic Chemistry, 2019, 2019, 2129-2137.	2.4	9
22	Isochronous solutions of Einstein's equations and their Newtonian limit. International Journal of Geometric Methods in Modern Physics, 2018, 15, 1850101.	2.0	1
23	Examples of Hamiltonians isochronous in configuration space only and their quantization. Journal of Mathematical Physics, 2018, 59, 062701.	1.1	11
24	Zeros of Entire Functions and Related Systems of Infinitely Many Nonlinearly Coupled Evolution Equations. Theoretical and Mathematical Physics(Russian Federation), 2018, 196, 1111-1128.	0.9	12
25	Solvable nonlinear discrete-time evolutions and Diophantine findings. Journal of Nonlinear Mathematical Physics, 2018, 25, 515.	1.3	0
26	Zeros of rational functions and solvable nonlinear evolution equations. Journal of Mathematical Physics, 2018, 59, .	1.1	4
27	Simple Extensions of the Lotka-Volterra Prey-Predator Model. Mathematical Intelligencer, 2018, 40, 16-19.	0.2	Ο
28	Finite and infinite systems of nonlinearly-coupled ordinary differential equations, the solutions of which feature remarkable Diophantine findings. Journal of Nonlinear Mathematical Physics, 2018, 25, 433.	1.3	1
29	Generations of solvable discrete-time dynamical systems. Journal of Mathematical Physics, 2017, 58, 052701.	1.1	16
30	Novel differential algorithm to evaluate all the zeros of any generic polynomial. Journal of Nonlinear Mathematical Physics, 2017, 24, 469.	1.3	14
31	Yet Another Class of New Solvable N-Body Problems of Goldfish Type. Qualitative Theory of Dynamical Systems, 2017, 16, 561-577.	1.7	16
32	The peculiar (monic) polynomials, the zeros of which equal their coefficients. Journal of Nonlinear Mathematical Physics, 2017, 24, 545.	1.3	12
33	Three New Classes of Solvable N-Body Problems of Goldfish Type with Many Arbitrary Coupling Constants. Symmetry, 2016, 8, 53.	2.2	18
34	Comment on "Nonlinear differential algorithm to compute all the zeros of a generic polynomial―[J. Math. Phys. 57, 083508 (2016)]. Journal of Mathematical Physics, 2016, 57, 104101.	1.1	1
35	Novelisochronous N-body problems featuringN arbitrary rationalcoupling constants. Journal of Mathematical Physics, 2016, 57, 072901.	1.1	21
36	New C-integrable and S-integrable systems of nonlinear partial differential equations. Journal of Nonlinear Mathematical Physics, 2016, 24, 142.	1.3	18

#	Article	IF	CITATIONS
37	A convenient expression of the time-derivative zn(k)(t), of arbitrary order <i>k</i> , of the zero <i>z _n </i> (<i>t</i>) of a time-dependent polynomial <i>p _N </i> (<i>z</i> ; <i>t</i>) of arbitrary degree <i>N</i>) in <i>z</i> , and solvable dynamical systems. Journal of Nonlinear Mathematical Physics. 2016, 23, 474.	1.3	20
38	Integrable Hamiltonian N-body problems of goldfish type featuring N arbitrary functions. Journal of Nonlinear Mathematical Physics, 2016, 24, 1.	1.3	14
39	New solvable dynamical systems. Journal of Nonlinear Mathematical Physics, 2016, 23, 486.	1.3	15
40	Some matrix functional equations. Theoretical and Mathematical Physics(Russian Federation), 2016, 189, 1411-1429.	0.9	0
41	Nonlinear differential algorithm to compute all the zeros of a generic polynomial. Journal of Mathematical Physics, 2016, 57, 083508.	1.1	3
42	New Solvable Variants of the Goldfish Many-Body Problem. Studies in Applied Mathematics, 2016, 137, 123-139.	2.4	31
43	Generations of Monic Polynomials such that the Coefficients of Each Polynomial of the Next Generation Coincide with the Zeros of a Polynomial of the Current Generation, and New Solvable Many-Body Problems. Letters in Mathematical Physics, 2016, 106, 1011-1031.	1.1	25
44	A Solvable N-body Problem of Goldfish Type Featuring N2 Arbitrary Coupling Constants. Journal of Nonlinear Mathematical Physics, 2016, 23, 300.	1.3	20
45	Novel <i>solvable</i> many-body problems. Journal of Nonlinear Mathematical Physics, 2016, 23, 190.	1.3	25
46	More, or less, trivial matrix functional equations. Aequationes Mathematicae, 2016, 90, 541-557.	0.8	2
47	A new solvable many-body problem of goldï¬sh type. Journal of Nonlinear Mathematical Physics, 2016, 23, 28.	1.3	15
48	Properties of the zeros of the polynomials belonging to the q-Askey scheme. Journal of Mathematical Analysis and Applications, 2016, 433, 525-542.	1.0	6
49	Properties of the zeros of generalized basic hypergeometric polynomials. Journal of Mathematical Physics, 2015, 56, 112701.	1.1	2
50	Isochronous spacetimes and cosmologies. Journal of Physics: Conference Series, 2015, 626, 012004.	0.4	2
51	Isochronous Spacetimes. Acta Applicandae Mathematicae, 2015, 137, 3-16.	1.0	3
52	Finite-dimensional representations of difference operators and the identification of remarkable matrices. Journal of Mathematical Physics, 2015, 56, 033506.	1.1	5
53	A macroscopic system with undamped periodic compressional oscillations. Journal of Physics: Conference Series, 2014, 482, 012027.	0.4	1
54	A large class of solvable discrete-time many-body problems. Journal of Mathematical Physics, 2014, 55, 082703.	1.1	13

#	Article	IF	CITATIONS
55	Isochronous cosmologies. International Journal of Geometric Methods in Modern Physics, 2014, 11, 1450054.	2.0	6
56	A nonautonomous yet solvable discrete-time <i>N</i> -body problem. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 105203.	2.1	13
57	Properties of the Zeros of the Polynomials Belonging to the Askey Scheme. Letters in Mathematical Physics, 2014, 104, 1571-1588.	1.1	10
58	Many-Body Problem with Quadratic and/or Inversely-Quadratic Potentials in One- and More-Dimensional Spaces: Some Retrospective Remarks. Journal of Statistical Physics, 2014, 155, 658-665.	1.2	0
59	Properties of the zeros of generalized hypergeometric polynomials. Journal of Mathematical Analysis and Applications, 2014, 419, 1076-1094.	1.0	7
60	A Macroscopic System with Undamped Periodic Compressional Oscillations. Journal of Statistical Physics, 2013, 151, 922-937.	1.2	5
61	Polynomials Satisfying Functional and Differential Equations and Diophantine Properties of Their Zeros. Letters in Mathematical Physics, 2013, 103, 629-651.	1.1	7
62	On the Zeros of Polynomials Satisfying Certain Linear Second-Order ODEs Featuring Many Free Parameters. Journal of Nonlinear Mathematical Physics, 2013, 20, 191.	1.3	7
63	Properties of the zeros of the sum of three polynomials. Journal of Nonlinear Mathematical Physics, 2013, 20, 469.	1.3	4
64	Equilibria of a solvable N-body problem and related properties of the N numbers x n at which the Jacobi polynomial of order N has the same value. Journal of Nonlinear Mathematical Physics, 2013, 20, 539.	1.3	4
65	New solvable discrete-time many-body problem featuring several arbitrary parameters. II. Journal of Mathematical Physics, 2013, 54, 102702.	1.1	14
66	Diophantine Properties Associated to the Equilibrium Configurations of an Isochronous <i>N</i> Body Problem. Journal of Nonlinear Mathematical Physics, 2013, 20, 158.	1.3	7
67	Properties of the Zeros of the Sum of two Polynomials. Journal of Nonlinear Mathematical Physics, 2013, 20, 348.	1.3	8
68	Can the <i>general</i> solution of the second-order ODE characterizing Jacobi polynomials be <i>polynomial</i> ?. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 095206.	2.1	15
69	New solvable discrete-time many-body problem featuring several arbitrary parameters. Journal of Mathematical Physics, 2012, 53, .	1.1	15
70	TWO QUITE SIMILAR MATRIX ODES AND THE MANY-BODY PROBLEMS RELATED TO THEM. International Journal of Geometric Methods in Modern Physics, 2012, 09, 1260002.	2.0	2
71	On a technique to identify solvable discrete-time many-body problems. Theoretical and Mathematical Physics(Russian Federation), 2012, 172, 1052-1072.	0.9	16
72	Understanding complex dynamics by means of an associated Riemann surface. Physica D: Nonlinear Phenomena, 2012, 241, 1291-1305.	2.8	15

#	Article	IF	CITATIONS
73	New Solvable Many-Body Model of Goldfish Type. Journal of Nonlinear Mathematical Physics, 2012, 19, 62.	1.3	16
74	Diophantine properties of the zeros of certain Laguerre and para-Jacobi polynomials. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 095207.	2.1	10
75	Another new goldfish model. Theoretical and Mathematical Physics(Russian Federation), 2012, 171, 629-640.	0.9	5
76	A New Class of Solvable Many-Body Problems. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 2012, , .	0.5	2
77	Isochronous dynamical systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1118-1136.	3.4	14
78	Novel rate equations describing isochronous chemical reactions. Journal of Mathematical Chemistry, 2011, 49, 870-879.	1.5	0
79	Isochronous Systems, the Arrow of Time, and the Definition of Deterministic Chaos. Letters in Mathematical Physics, 2011, 96, 37-52.	1.1	6
80	A new goldfish model. Theoretical and Mathematical Physics(Russian Federation), 2011, 167, 714-724.	0.9	22
81	An integrable many-body problem. Journal of Mathematical Physics, 2011, 52, 102702.	1.1	5
82	An Invertible Transformation and Some of its Applications. Journal of Nonlinear Mathematical Physics, 2011, 18, 1.	1.3	6
83	Discrete-Time Goldfishing. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 2011, , .	0.5	19
84	"Exact solution of N-dimensional radial Schrödinger equation for the fourth-order inverse-power potential". European Physical Journal D, 2010, 57, 1-1.	1.3	0
85	Isochronous Oscillators. Journal of Nonlinear Mathematical Physics, 2010, 17, 103.	1.3	2
86	Solvable Systems of Isochronous, Multi-Periodic or Asymptotically Isochronous Nonlinear Oscillators. Journal of Nonlinear Mathematical Physics, 2010, 17, 111.	1.3	4
87	Isochronous rate equations describing chemical reactions. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 434010.	2.1	3
88	Two New Solvable Dynamical Systems of Goldfish Type. Journal of Nonlinear Mathematical Physics, 2010, 17, 397.	1.3	23
89	Additional Recursion Relations, Factorizations, and Diophantine Properties Associated with the Polynomials of the Askey Scheme. Advances in Mathematical Physics, 2009, 2009, 1-43.	0.8	12
90	Oscillatory and isochronous rate equations possibly describing chemical reactions. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 265208.	2.1	5

#	Article	IF	CITATIONS
91	How to Extend any Dynamical System so That it Becomes Isochronous, Asymptotically Isochronous or Multi-Periodic. Journal of Nonlinear Mathematical Physics, 2009, 16, 311.	1.3	11
92	How to embed an arbitrary Hamiltonian dynamics in a superintegrable (or just integrable) Hamiltonian dynamics. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 145202.	2.1	3
93	An isochronous variant of the Ruijsenaars–Toda model: equilibrium configurations, behavior in their neighborhood, Diophantine relations. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 445207.	2.1	3
94	Towards a theory of chaos explained as travel on Riemann surfaces. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 015205.	2.1	26
95	New evolution PDEs with many isochronous solutions. Journal of Mathematical Analysis and Applications, 2009, 353, 481-488.	1.0	0
96	Remembering Yakov Abramovich Smorodinsky. Physics of Atomic Nuclei, 2009, 72, 886-887.	0.4	0
97	Integrability, analyticity, isochrony, equilibria, small oscillations, and Diophantine relations: results from the stationary Burgers hierarchy. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 475202.	2.1	4
98	Short-time Poincaré recurrence in a broad class of many-body systems. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P02022.	2.3	5
99	Integrability, analyticity, isochrony, equilibria, small oscillations, and Diophantine relations: Results from the stationary Korteweg-de Vries hierarchy. Journal of Mathematical Physics, 2009, 50, 122701.	1.1	4
100	Isochronous Dynamical System and Diophantine Relations I. Journal of Nonlinear Mathematical Physics, 2009, 16, 105.	1.3	3
101	Examples of isochronous Hamiltonians: classical and quantal treatments. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 175202.	2.1	14
102	Spontaneous reversal of irreversible processes in a many-body Hamiltonian evolution. New Journal of Physics, 2008, 10, 023042.	2.9	8
103	A new class of isochronous dynamical systems. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 295101.	2.1	5
104	Asymptotically isochronous systems. Journal of Nonlinear Mathematical Physics, 2008, 15, 410.	1.3	27
105	ISOCHRONOUS PDEs. , 2008, , 188-210.		5
106	General technique to produce isochronous Hamiltonians. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 12931-12944.	2.1	40
107	Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 3815-3829.	2.1	16
108	Tridiagonal matrices, orthogonal polynomials and Diophantine relations: I. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 9793-9817.	2.1	17

#	Article	IF	CITATIONS
109	Tridiagonal matrices, orthogonal polynomials and Diophantine relations: II. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 14759-14772.	2.1	11
110	On a new technique to manufacture isochronous Hamiltonian systems: classical and quantal treatments. Journal of Nonlinear Mathematical Physics, 2007, 14, 612-636.	1.3	17
111	Isochronous systems and their quantization. Theoretical and Mathematical Physics(Russian) Tj ETQq1 1 0.784314	∙rgBT /Ov	erlock 10 Tf
112	On isochronous Shabat–Yamilov–Toda lattices: Equilibrium configurations, behavior in their neighborhood, diophantine relations and conjectures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 262-270.	2.1	8
113	New integrable PDEs of boomeronic type. Journal of Physics A, 2006, 39, 8349-8376.	1.6	10
114	On a class of Hamiltonians with (classical) isochronous motions and (quantal) equi-spaced spectra. Journal of Physics A, 2006, 39, 11803-11824.	1.6	20
115	On isochronous Bruschi–Ragnisco–Ruijsenaars–Toda lattices: equilibrium configurations, behaviour in their neighbourhood, diophantine relations and conjectures. Journal of Physics A, 2006, 39, 313-325.	1.6	10
116	Goldfishing by gauge theory. Journal of Mathematical Physics, 2006, 47, 082702.	1.1	19
117	Novel solvable variants of the goldfish many-body model. Journal of Mathematical Physics, 2006, 47, 022703.	1.1	13
118	Isochronous and partially isochronous Hamiltonian systems are not rare. Journal of Mathematical Physics, 2006, 47, 042901.	1.1	11
119	Goldfishing: A new solvable many-body problem. Journal of Mathematical Physics, 2006, 47, 102701.	1.1	4
120	Isochronous dynamical systems. Applicable Analysis, 2006, 85, 5-22.	1.3	10
121	Novel solution of the system describing the resonant interaction of three waves. Physica D: Nonlinear Phenomena, 2005, 200, 242-256.	2.8	35
122	Isochronous PDEs. Physics of Atomic Nuclei, 2005, 68, 899-908.	0.4	3
123	A modified Schwarzian Korteweg-de Vries equation in 2 + 1 dimensions with lots of isochronous solutions. Physics of Atomic Nuclei, 2005, 68, 1646-1653.	0.4	4
124	The transition from regular to irregular motions, explained as travel on Riemann surfaces. Journal of Physics A, 2005, 38, 8873-8896.	1.6	46
125	Novel solvable extensions of the goldfish many-body model. Journal of Mathematical Physics, 2005, 46, 103515.	1.1	25
126	On the Quantization of Yet Another Two Nonlinear Harmonic Oscillators. Journal of Nonlinear Mathematical Physics, 2004, 11, 1.	1.3	32

#	Article	IF	CITATIONS
127	New Integrable Equations of Nonlinear Schrodinger Type. Studies in Applied Mathematics, 2004, 113, 91-137.	2.4	21
128	Lower limit in semiclassical form for the number of bound states in a central potential. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 321, 225-230.	2.1	5
129	Convenient parameterizations of matrices in terms of vectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 327, 312-319.	2.1	2
130	Integrable systems of quartic oscillators II. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 327, 320-326.	2.1	9
131	Two New Classes of Isochronous Hamiltonian Systems. Journal of Nonlinear Mathematical Physics, 2004, 11, 208.	1.3	13
132	A technique to identify solvable dynamical systems, and a solvable generalization of the goldfish many-body problem. Journal of Mathematical Physics, 2004, 45, 2266-2279.	1.1	28
133	Solution of the Goldfish N-Body Problem in the Plane with (Only) Nearest-Neighbor Coupling Constants All Equal to Minus One Half. Journal of Nonlinear Mathematical Physics, 2004, 11, 102.	1.3	15
134	A technique to identify solvable dynamical systems, and another solvable extension of the goldfish many-body problem. Journal of Mathematical Physics, 2004, 45, 4661-4678.	1.1	12
135	On the quantization of Newton-equivalent Hamiltonians. American Journal of Physics, 2004, 72, 1202-1203.	0.7	23
136	Partially Superintegrable (Indeed Isochronous) Systems are not Rare. , 2004, , 49-77.		7
137	Isochronous motions galore: Nonlinearly coupled oscillators with lots of isochronous solutions. CRM Proceedings & Lecture Notes, 2004, , 15-27.	0.1	9
138	Nonlinear Evolution ODEs Featuring Many Periodic Solutions. Theoretical and Mathematical Physics(Russian Federation), 2003, 137, 1663-1675.	0.9	11
139	Cool irrational numbers and their rather cool rational approximations. Mathematical Intelligencer, 2003, 25, 72-76.	0.2	1
140	On the quantization of two other nonlinear harmonic oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 319, 240-245.	2.1	27
141	A class of (â,,"-dependent) potentials with the same number of (â,,"-wave) bound states. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 312, 16-20.	2.1	3
142	On the quantization of a nonlinear Hamiltonian oscillator. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 313, 356-362.	2.1	28
143	A further solvable three-body problem in the plane. Journal of Mathematical Physics, 2003, 44, 5159-5165.	1.1	5
144	General solution of a three-body problem in the plane. Journal of Physics A, 2003, 36, 7291-7299.	1.6	12

#	Article	IF	CITATIONS
145	Upper and lower limits for the number of S-wave bound states in an attractive potential. Journal of Mathematical Physics, 2003, 44, 1554-1575.	1.1	23
146	Periodic Solutions of a Many-Rotator Problem in the Plane. II. Analysis of Various Motions. Journal of Nonlinear Mathematical Physics, 2003, 10, 157.	1.3	30
147	Upper and lower limits on the number of bound states in a central potential. Journal of Physics A, 2003, 36, 12021-12063.	1.6	16
148	Differential equations featuring many periodic solutions. , 2003, , 9-20.		10
149	Periodic Motions Galore: How to Modify Nonlinear Evolution Equations so that They Feature a Lot of Periodic Solutions. Journal of Nonlinear Mathematical Physics, 2002, 9, 99.	1.3	25
150	On a modified version of a solvable ODE due to Painlevé. Journal of Physics A, 2002, 35, 985-992.	1.6	13
151	A complex deformation of the classical gravitational many-body problem that features many completely periodic motions. Journal of Physics A, 2002, 35, 3619-3627.	1.6	17
152	Periodic Solutions of a System of Complex ODEs. II. Higher Periods. Journal of Nonlinear Mathematical Physics, 2002, 9, 483.	1.3	18
153	Nonlinear harmonic oscillators. Journal of Physics A, 2002, 35, 10365-10375.	1.6	27
154	On modified versions of some solvable ordinary differential equations due to Chazy. Journal of Physics A, 2002, 35, 4249-4256.	1.6	12
155	Periodic solutions of a system of complex ODEs. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 293, 146-150.	2.1	22
156	Solvable Three-Body Problem and Painlevé Conjectures. Theoretical and Mathematical Physics(Russian) Tj ETQ	q0.0.0 rgB	BT /Qverlock 1
157	The neatest many-body problem amenable to exact treatments (a "goldfish�). Physica D: Nonlinear Phenomena, 2001, 152-153, 78-84.	2.8	77
158	The ABCs of Magnetic Monopole Dynamics. Theoretical and Mathematical Physics(Russian Federation), 2001, 128, 835-844.	0.9	2
159	Periodic solutions of a many-rotator problem in the plane. Inverse Problems, 2001, 17, 871-878.	2.0	28
160	Classical Many-Body Problems Amenable to Exact Treatments. Lecture Notes in Physics Monographs, 2001, , .	0.5	191
161	Integrable systems of quartic oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 273, 173-182.	2.1	10
162	On the integrability of certain matrix evolution equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 273, 167-172.	2.1	7

#	Article	IF	CITATIONS
163	Solution of Certain Integrable Dynamical Systems of Ruijsenaars-Schneider Type with CompletelyPeriodic Trajectories. Annales Henri Poincare, 2000, 1, 173-191.	1.7	13
164	Solvable and/or Integrable and/or Linearizable N-Body Problems in Ordinary (Three-Dimensional) Space. I. Journal of Nonlinear Mathematical Physics, 2000, 7, 303.	1.3	8
165	Tricks of the Trade: Relating and Deriving Solvable and Integrable Dynamical Systems. , 2000, , 93-116.		4
166	Integrable and solvable many-body problems in the plane via complexification. Journal of Mathematical Physics, 1998, 39, 5268-5291.	1.1	17
167	A class of integrable Hamiltonian systems whose solutions are (perhaps) all completely periodic. Journal of Mathematical Physics, 1997, 38, 5711-5719.	1.1	62
168	A solvable Nâ€body problem in the plane. I. Journal of Mathematical Physics, 1996, 37, 1735-1759.	1.1	19
169	Câ€integrable nonlinear partial differential equations. III. Journal of Mathematical Physics, 1993, 34, 5810-5831.	1.1	15
170	General Analytic Solution of Certain Functional Equations of Addition Type. SIAM Journal on Mathematical Analysis, 1990, 21, 1019-1030.	1.9	25
171	Universality and integrability of the nonlinear evolution PDE's describing Nâ€wave interactions. Journal of Mathematical Physics, 1989, 30, 28-40.	1.1	24
172	The evolution partial differential equation ut=uxxx+3(uxxu2 +3u2xu)+3uxu4. Journal of Mathematical Physics, 1987, 28, 538-555.	1.1	38
173	The Lax representation for an integrable class of relativistic dynamical systems. Communications in Mathematical Physics, 1987, 109, 481-492.	2.2	46
174	Disproof of a conjecture. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1982, 35, 181-185.	0.4	2
175	Rational solutions of the KdV equation with damping. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1979, 24, 97-100.	0.4	6
176	Properties of the zeros of the classical polynomials and of the Bbessel functions. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1979, 49, 173-199.	0.2	80
177	Asymptotic density of the zeros of Laguerre and Jacobi polynomials. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1978, 23, 653-656.	0.4	4
178	Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related «solvable» many-body problems. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1978, 43, 177-241.	0.2	173
179	Nonlinear evolution equations solvable by the inverse spectral transform.— II. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1977, 39, 1-54.	0.2	174
180	Nonlinear evolution equations solvable by the inverse spectral transform associated with the multichannel SchrĶdinger problem, and properties of their solutions. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1976, 15, 65-69.	0.4	19

#	Article	IF	CITATIONS
181	Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1976, 16, 425-433.	0.4	104
182	BÜklund transformations, nonlinear superposition principle, multisoliton solutions and conserved quantities for the « boomeron » nonlinear evolution equation. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1976, 16, 434-438.	0.4	42
183	On a functional equation connected with integrable many-body problems. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1976, 16, 77-80.	0.4	61
184	Exactly solvable one-dimensional many-body problems. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1975, 13, 411-416.	0.4	320
185	Solution of the Oneâ€Dimensional Nâ€Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials. Journal of Mathematical Physics, 1971, 12, 419-436.	1.1	1,136
186	Necessary conditions for saturation of nuclear forces. Lettere Al Nuovo Cimento Rivista Internazionale Della Società Italiana Di Fisica, 1970, 4, 219-225.	0.4	10
187	Solution of a Threeâ€Body Problem in One Dimension. Journal of Mathematical Physics, 1969, 10, 2191-2196.	1.1	913
188	Parameter-Dependent Monic Polynomials: Definitions, Key Formulas and Other Preliminaries. , 0, , 4-25.		0
189	A Differential Algorithm to Compute All the Zeros of a Generic Polynomial. , 0, , 26-33.		0
190	Solvable and Integrable Nonlinear Dynamical Systems: Mainly Newtonian N-Body Problems in the Plane. , 0, , 34-109.		0
191	Solvable Systems of Nonlinear Partial Differential Equations (PDEs). , 0, , 110-118.		0
192	Generations of Monic Polynomials. , 0, , 119-142.		0
193	Discrete Time. , 0, , 143-159.		0
194	Explicitly solvable systems of two autonomous first-order Ordinary Differential Equations with homogeneous quadratic right-hand sides. , 0, Volume 1, .		1
195	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie, 0, , .	2.0	8