
Ali Dabirian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3466622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Indiumâ€Free Anode for Largeâ€Area Flexible OLEDs: Defectâ€Free Transparent Conductive Zinc Tin Oxide. Advanced Functional Materials, 2016, 26, 384-392.	7.8	90
2	Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 17260-17267.	4.0	80
3	High-Temperature Ammonolysis of Thin Film Ta ₂ O ₅ Photoanodes: Evolution of Structural, Optical, and Photoelectrochemical Properties. Chemistry of Materials, 2015, 27, 708-715.	3.2	71
4	Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres. Optics Letters, 2007, 32, 2200.	1.7	63
5	Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO4 photoanodes decorated with Ag@SiO2 core–shell nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 15272-15277.	1.3	61
6	Optimization of charge transport in a Co–Pi modified hematite thin film produced by scalable electron beam evaporation for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2017, 5, 3412-3424.	5.2	56
7	Environmental stability of high-mobility indium-oxide based transparent electrodes. APL Materials, 2015, 3, 116105.	2.2	47
8	Spray-deposited Co-Pi Catalyzed BiVO ₄ : a low-cost route towards highly efficient photoanodes. Materials Research Society Symposia Proceedings, 2012, 1446, 7.	0.1	36
9	High vacuum chemical vapour deposition of oxides:. Surface and Coatings Technology, 2013, 230, 13-21.	2.2	32
10	Wet ammonia Synthesis of Semiconducting N:Ta2O5, Ta3N5 and β-TaON Films for Photoanode Applications. Energy Procedia, 2012, 22, 15-22.	1.8	28
11	Synthesis of mesoporous functional hematite nanofibrous photoanodes by electrospinning. Polymers for Advanced Technologies, 2016, 27, 358-365.	1.6	27
12	Theoretical Study of Light Trapping in Nanostructured Thin Film Solar Cells Using Wavelength-Scale Silver Particles. ACS Applied Materials & Interfaces, 2015, 7, 14926-14932.	4.0	26
13	Self-Assembled Monolayer of Wavelength-Scale Core–Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 247-255.	4.0	25
14	The radiated fields of the fundamental mode of photonic crystal fibers. Optics Express, 2005, 13, 3999.	1.7	18
15	Dielectric core–shells with enhanced scattering efficiency as back-reflectors in dye sensitized solar cells. RSC Advances, 2014, 4, 3621-3626.	1.7	18
16	Combinatorial High-Vacuum Chemical Vapor Deposition of Textured Hafnium-Doped Lithium Niobate Thin Films on Sapphire. Crystal Growth and Design, 2011, 11, 203-209.	1.4	17
17	Unassisted Water Splitting Using Standard Silicon Solar Cells Stabilized with Copper and Bifunctional NiFe Electrocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 17424-17435.	4.0	17
18	Tuning the Optoelectronic Properties of ZnO:Al by Addition of Silica for Light Trapping in High‣fficiency Crystalline Si Solar Cells. Advanced Materials Interfaces, 2016, 3, 1500462.	1.9	16

ALI DABIRIAN

#	Article	IF	CITATIONS
19	Metal grid technologies for flexible transparent conductors in large-area optoelectronics. Current Applied Physics, 2021, 31, 105-121.	1.1	15
20	Combinatorial Discovery and Optimization of Amorphous HfO[sub 2]–Nb[sub 2]O[sub 5] Mixture with Improved Transparency. Electrochemical and Solid-State Letters, 2010, 13, G60.	2.2	14
21	Micron-scale rod-like scattering particles for light trapping in nanostructured thin film solar cells. RSC Advances, 2015, 5, 86050-86055.	1.7	12
22	Chemical Vapor Deposition Kinetics and Localized Growth Regimes in Combinatorial Experiments. ChemPhysChem, 2011, 12, 3524-3528.	1.0	11
23	Combinatorial Chemical Beam Epitaxy of Lithium Niobate Thin Films on Sapphire. Journal of the Electrochemical Society, 2011, 158, D72.	1.3	11
24	Resonant-size spherical bottom scatterers for dye-sensitized solar cells. RSC Advances, 2013, 3, 25417.	1.7	11
25	Design of a Slit-Groove Coupler for Unidirectional Excitation of the Guided Surface Plasmon Polaritons Through a Plasmonic Slot Waveguide. Plasmonics, 2017, 12, 131-138.	1.8	11
26	Mechanical integrity of hybrid indium-free electrodes for flexible devices. Organic Electronics, 2016, 35, 136-141.	1.4	10
27	Efficient Nanoporous Hematite Photoanodes Prepared by Electron Beam Evaporation and Au Modification. ChemCatChem, 2018, 10, 4665-4675.	1.8	10
28	The coupling performance of photonic crystal fibres in fibre stellar interferometry. Monthly Notices of the Royal Astronomical Society, 2006, 368, 203-210.	1.6	9
29	Light trapping in hematite-coated transparent particles for solar fuel generation. RSC Advances, 2015, 5, 11946-11951.	1.7	9
30	Photonic design of embedded dielectric scatterers for dye sensitized solar cells. RSC Advances, 2015, 5, 33098-33104.	1.7	9
31	Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core–Shell Plasmonic Particles. ACS Applied Materials & Interfaces, 2016, 8, 16359-16367.	4.0	9
32	Complex electrochemical study of reduced graphene oxide/Pt produced by Nd:YAG pulsed laser reduction as photo-anode in polymer solar cells. Journal of Electroanalytical Chemistry, 2021, 880, 114927.	1.9	8
33	Modal Transmission-Line Theory of Optical Waveguides. Journal of Electromagnetic Waves and Applications, 2005, 19, 891-906.	1.0	7
34	Propagation of light in photonic crystal fibre devices. Journal of Optics, 2005, 7, 663-668.	1.5	6
35	Extreme light absorption in a necking-free monolayer of resonant-size nanoparticles for photoelectrochemical cells. Journal of Optics (United Kingdom), 2014, 16, 075001.	1.0	6
36	Determination of local refractive index variations in thin films by heterodyne interferometric scanning near-field optical microscopy. Review of Scientific Instruments, 2009, 80, 093706.	0.6	5

Ali Dabirian

#	Article	IF	CITATIONS
37	Aggregates of plasmonic nanoparticles for broadband light trapping in dye-sensitized solar cells. Journal of Optics (United Kingdom), 2016, 18, 015902.	1.0	5
38	Optical Evaluation of the Rear Contacts of Crystalline Silicon Solar Cells by Coupled Electromagnetic and Statistical Ray-Optics Modeling. IEEE Journal of Photovoltaics, 2017, 7, 718-726.	1.5	5
39	Controlled electrophoretic deposition of electrochemically exfoliated graphene sheets on Ag nanowires network. Micro and Nano Letters, 2019, 14, 389-393.	0.6	5
40	Influence of Au thickness on the performance of plasmonic enhanced hematite photoanodes. RSC Advances, 2013, 3, 17837.	1.7	4
41	Evaluation of niobium dimethylamino-ethoxide for chemical vapour deposition of niobium oxide thin films. Thin Solid Films, 2014, 571, 94-101.	0.8	4
42	Combinatorial Chemical Vapor Deposition of Lithium Niobate Thin Films. ECS Transactions, 2009, 25, 1221-1228.	0.3	3
43	Effect of film morphology on water oxidation enhancement in NiFeCo modified hematite photoanodes. Surface and Coatings Technology, 2021, 421, 127362.	2.2	3

Light focusing at the end-face of a high-index cladding optical fiber. Journal of Optics (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 462

45	Computational study of film morphology impact on light absorption in particulate Ta ₃ N ₅ /Si photoanodes for water splitting. Journal Physics D: Applied Physics, 2020, 53, 185501.		1.3	0	
----	--	--	-----	---	--