
Matthew L Nilles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3466036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Sequence of Yersinia pestis KIM. Journal of Bacteriology, 2002, 184, 4601-4611.	1.0	534
2	Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Molecular Microbiology, 2003, 48, 1609-1619.	1.2	301
3	Resistance of <i>Yersinia pestis</i> to Complement-Dependent Killing Is Mediated by the Ail Outer Membrane Protein. Infection and Immunity, 2008, 76, 612-622.	1.0	135
4	Virulence Role of V Antigen of <i>Yersinia pestis</i> at the Bacterial Surface. Infection and Immunity, 1999, 67, 5395-5408.	1.0	130
5	Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. Journal of Bacteriology, 1997, 179, 1307-1316.	1.0	129
6	The MtrD protein of Neisseria gonorrhoeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology (United Kingdom), 1997, 143, 2117-2125.	0.7	103
7	The V Antigen of Yersinia pestis Regulates Yop Vectorial Targeting as Well as Yop Secretion through Effects on YopB and LcrG. Journal of Bacteriology, 1998, 180, 3410-3420.	1.0	96
8	LcrG-LcrV Interaction Is Required for Control of Yops Secretion in Yersinia pestis. Journal of Bacteriology, 2001, 183, 5082-5091.	1.0	81
9	Immunization of mice with YscF provides protection from Yersinia pestis infections. BMC Microbiology, 2005, 5, 38.	1.3	71
10	The mechanisms responsible for 2-dimensional pattern formation in bacterial macrofiber populations grown on solid surfaces: fiber joining and the creation of exclusion zones. BMC Microbiology, 2002, 2, 1.	1.3	41
11	Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure. PLoS Neglected Tropical Diseases, 2015, 9, e0003803.	1.3	39
12	A Type III Secretion System Inhibitor Targets YopD while Revealing Differential Regulation of Secretion in Calcium-Blind Mutants of Yersinia pestis. Antimicrobial Agents and Chemotherapy, 2014, 58, 839-850.	1.4	37
13	Type III Secretion Needle Proteins Induce Cell Signaling and Cytokine Secretion via Toll-Like Receptors. Infection and Immunity, 2014, 82, 2300-2309.	1.0	28
14	Dengue virus specific IgY provides protection following lethal dengue virus challenge and is neutralizing in the absence of inducing antibody dependent enhancement. PLoS Neglected Tropical Diseases, 2017, 11, e0005721.	1.3	26
15	Interaction of the Yersinia pestis type III regulatory proteins LcrG and LcrV occurs at a hydrophobic interface. BMC Microbiology, 2002, 2, 16.	1.3	25
16	Structure-Function Analysis of the C-Terminal Domain of LcrV from <i>Yersinia pestis</i> . Journal of Bacteriology, 2007, 189, 6734-6739.	1.0	23
17	Necroptosis of infiltrated macrophages drives Yersinia pestis dispersal within buboes. JCI Insight, 2018, 3, .	2.3	22
18	Roles of YopN, LcrG and LcrV in Controlling Yops Secretion by Yersinia pestis. Advances in Experimental Medicine and Biology, 2007, 603, 225-234.	0.8	19

MATTHEW L NILLES

#	Article	IF	CITATIONS
19	Zika Virus-Specific IgY Results Are Therapeutic Following a Lethal Zika Virus Challenge without Inducing Antibody-Dependent Enhancement. Viruses, 2019, 11, 301.	1.5	17
20	The N Terminus of Type III Secretion Needle Protein YscF from Yersinia pestis Functions To Modulate Innate Immune Responses. Infection and Immunity, 2015, 83, 1507-1522.	1.0	14
21	Dissecting the Structure of LcrV from Yersinia pestis, a Truly Unique Virulence Protein. Structure, 2004, 12, 357-358.	1.6	9
22	LcrG secretion is not required for blocking of Yops secretion in Yersinia pestis. BMC Microbiology, 2008, 8, 29.	1.3	6
23	Resistance to Yersinia pestis Infection Decreases with Age in B10.T(6R) Mice. Infection and Immunity, 2011, 79, 4438-4446.	1.0	5
24	Identification of the Targets of Type III Secretion System Inhibitors. Methods in Molecular Biology, 2017, 1531, 203-211.	0.4	5
25	Avian anti-NS1 IgY antibodies neutralize dengue virus infection and protect against lethal dengue virus challenge. Antiviral Research, 2020, 183, 104923.	1.9	5
26	Introduction to Type III Secretion Systems. Methods in Molecular Biology, 2017, 1531, 1-10.	0.4	4
27	In Vivo Photo-Cross-Linking to Study T3S Interactions Demonstrated Using the Yersinia pestis T3S System. Methods in Molecular Biology, 2017, 1531, 47-60.	0.4	3
28	Mouse Immunization with Purified Needle Proteins from Type III Secretion Systems and the Characterization of the Immune Response to These Proteins. Methods in Molecular Biology, 2017, 1531, 193-201.	0.4	2
29	Type III Secretion Systems. , 0, , 95-114.		2
30	Modulation of Inflammatory Signaling Molecules in Bordetella pertussis Antigen-Challenged Human Monocytes in Presence of Adrenergic Agonists. Vaccines, 2022, 10, 321.	2.1	2
31	Detection of Protein Interactions in T3S Systems Using Yeast Two-Hybrid Analysis. Methods in Molecular Biology, 2017, 1531, 213-222.	0.4	1
32	A Method for Characterizing the Type III Secretion System's Contribution to Pathogenesis: Homologous Recombination to Generate Yersinia pestis Type III Secretion System Mutants. Methods in Molecular Biology, 2017, 1531, 155-164.	0.4	0
33	Blue Native Protein Electrophoresis to Study the T3S System Using Yersinia pestis as a Model. Methods in Molecular Biology, 2017, 1531, 33-46.	0.4	0
34	Expression and Purification of N-Terminally His-Tagged Recombinant Type III Secretion Proteins. Methods in Molecular Biology, 2017, 1531, 183-191.	0.4	0
35	Isolation of Type III Secretion System Needle Complexes by Shearing. Methods in Molecular Biology, 2017, 1531, 61-70.	0.4	0
36	Analysis of Type III Secretion System Secreted Proteins. Methods in Molecular Biology, 2017, 1531, 93-99.	0.4	0

#	Article	IF	CITATIONS
37	Difference in Strain Pathogenicity of Septicemic Yersinia pestis Infection in a TLR2 ^{â^'/â^'} Mouse Model. Infection and Immunity, 2020, 88, .	1.0	0
38	Gammaâ€irradiated pCD1―Yersinia pestis vaccine is protective: an antiâ€LcrV response is not necessary to protect against the plague. FASEB Journal, 2008, 22, 859.13.	0.2	0
39	Effect of HLA-DQ presentation on SEG/SEI superantigenic reactivity to a CD4+-mediated anti-tumor response devoid of autoimmune or allogeneic effects Journal of Clinical Oncology, 2016, 34, e21047-e21047.	0.8	0
40	Characterization of Prostanoids Response to Bordetella pertussis Antigen BscF and Tdap in LPS-challenged monocytes. Prostaglandins Leukotrienes and Essential Fatty Acids, 2022, , 102452.	1.0	0