Myeong-Lok Seol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/346590/publications.pdf

Version: 2024-02-01

76 3,400 31 57 papers citations h-index 9 april 162838 57 papers 78 78 5616

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Printable Gel Polymer Electrolytes for Solid-State Printed Supercapacitors. Materials, 2021, 14, 316.	1.3	8
2	A nanoscale vacuum field emission gated diode with an umbrella cathode. Nanoscale Advances, 2021, 3, 1725-1729.	2.2	12
3	Methodologies for Fabricating Flexible Supercapacitors. Micromachines, 2021, 12, 163.	1.4	14
4	Patch-Type Vibration Visualization (PVV) Sensor System Based on Triboelectric Effect. Sensors, 2021, 21, 3976.	2.1	1
5	Printing of a Passivation Layer for the Protection of Printed Supercapacitors. ACS Applied Electronic Materials, 2020, 2, 3643-3649.	2.0	2
6	Nanoscale Complementary Vacuum Field Emission Transistor. ACS Applied Nano Materials, 2020, 3, 11481-11488.	2.4	20
7	All 3D-Printed Flexible ZnO UV Photodetector on an Ultraflat Substrate. ACS Sensors, 2020, 5, 1028-1032.	4.0	34
8	All-Printed In-Plane Supercapacitors by Sequential Additive Manufacturing Process. ACS Applied Energy Materials, 2020, 3, 4965-4973.	2.5	32
9	Electrically-generated memristor based on inkjet printed silver nanoparticles. Nanoscale Advances, 2019, 1, 2990-2998.	2.2	22
10	Nanoscale vacuum channel transistors fabricated on silicon carbide wafers. Nature Electronics, 2019, 2, 405-411.	13.1	73
11	Physically Unclonable Function by an All-Printed Carbon Nanotube Network. ACS Applied Electronic Materials, 2019, 1, 1162-1168.	2.0	22
12	Carbon Nanotube Based \hat{I}^3 Ray Detector. ACS Sensors, 2019, 4, 1097-1102.	4.0	7
13	Self-sustainable wind speed sensor system with omni-directional wind based triboelectric generator. Nano Energy, 2019, 55, 115-122.	8.2	35
14	A multi-directional wind based triboelectric generator with investigation of frequency effects. Extreme Mechanics Letters, 2018, 19, 46-53.	2.0	9
15	All-printed triboelectric nanogenerator. Nano Energy, 2018, 44, 82-88.	8.2	97
16	Wearable UV Sensor Based on Carbon Nanotube-Coated Cotton Thread. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40198-40202.	4.0	49
17	A Single Input Multiple Output (SIMO) Variation-Tolerant Nanosensor. ACS Sensors, 2018, 3, 1782-1788.	4.0	8
18	All 3D printed energy harvester for autonomous and sustainable resource utilization. Nano Energy, 2018, 52, 271-278.	8.2	40

#	Article	IF	Citations
19	A SONOS device with a separated charge trapping layer for improvement of charge injection. AIP Advances, 2017, 7, .	0.6	4
20	Hysteretic behavior of contact force response in triboelectric nanogenerator. Nano Energy, 2017, 32, 408-413.	8.2	47
21	Triboelectric nanogenerator for Mars environment. Nano Energy, 2017, 39, 238-244.	8.2	49
22	Electro-Thermal Annealing Method for Recovery of Cyclic Bending Stress in Flexible a-IGZO TFTs. IEEE Transactions on Electron Devices, 2017, 64, 3189-3192.	1.6	22
23	On-the-fly dopant redistribution in a silicon nanowire p–n junction. Nano Research, 2017, 10, 2845-2855.	5.8	5
24	Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy, 2017, 31, 233-238.	8.2	127
25	Functionalized porous Si nanowires for selective and simultaneous electrochemical detection of $Cd(II)$ and $Pb(II)$ ions. Electrochimica Acta, 2016, 211, 998-1005.	2.6	55
26	Selfâ€Powered Ion Concentration Sensor with Triboelectricity from Liquid–Solid Contact Electrification. Advanced Electronic Materials, 2016, 2, 1600006.	2.6	57
27	Controllable electrical and physical breakdown of poly-crystalline silicon nanowires by thermally assisted electromigration. Scientific Reports, 2016, 6, 19314.	1.6	12
28	Logic circuits composed of flexible carbon nanotube thin-film transistor and ultra-thin polymer gate dielectric. Scientific Reports, 2016, 6, 26121.	1.6	29
29	Physically Transient Memory on a Rapidly Dissoluble Paper for Security Application. Scientific Reports, 2016, 6, 38324.	1.6	36
30	Sustainable electronics for nano-spacecraft in deep space missions. , 2016, , .		19
31	Single nanowire on graphene (SNOG) as an efficient, reproducible, and stable SERS-active platform. Nanoscale, 2016, 8, 8878-8886.	2.8	22
32	Hybrid energy harvester with simultaneous triboelectric and electromagnetic generation from an embedded floating oscillator in a single package. Nano Energy, 2016, 23, 50-59.	8.2	86
33	Triboelectric nanogenerator with nanostructured metal surface using water-assisted oxidation. Nano Energy, 2016, 21, 258-264.	8.2	59
34	Controlled anisotropic wetting of scalloped silicon nanogroove. RSC Advances, 2016, 6, 41914-41918.	1.7	16
35	Joule Heating to Enhance the Performance of a Gate-All-Around Silicon Nanowire Transistor. IEEE Transactions on Electron Devices, 2016, 63, 2288-2292.	1.6	8
36	Self-powered electro-coagulation system driven by a wind energy harvesting triboelectric nanogenerator for decentralized water treatment. Nano Energy, 2016, 28, 288-295.	8.2	61

#	Article	IF	Citations
37	Performance-enhanced triboelectric nanogenerator using the glass transition of polystyrene. Nano Energy, 2016, 27, 306-312.	8.2	33
38	Electrothermal Annealing (ETA) Method to Enhance the Electrical Performance of Amorphous-Oxide-Semiconductor (AOS) Thin-Film Transistors (TFTs). ACS Applied Materials & Samp; Interfaces, 2016, 8, 23820-23826.	4.0	14
39	Local Electro-Thermal Annealing for Repair of Total Ionizing Dose-Induced Damage in Gate-All-Around MOSFETs. IEEE Electron Device Letters, 2016, 37, 843-846.	2.2	22
40	A Triboelectric Sponge Fabricated from a Cube Sugar Template by 3D Soft Lithography for Superhydrophobicity and Elasticity. Advanced Electronic Materials, 2016, 2, 1500331.	2.6	70
41	Self-Destructible Fin Flip-Flop Actuated Channel Transistor. IEEE Electron Device Letters, 2016, 37, 130-133.	2.2	10
42	Self-Curable Gate-All-Around MOSFETs Using Electrical Annealing to Repair Degradation Induced From Hot-Carrier Injection. IEEE Transactions on Electron Devices, 2016, 63, 910-915.	1.6	33
43	Output enhancement of triboelectric energy harvester by micro-porous triboelectric layer. , 2015, , .		0
44	Surface Engineering of Triboelectric Nanogenerator with an Electrodeposited Gold Nanoflower Structure. Scientific Reports, 2015, 5, 13866.	1.6	51
45	Floating Oscillator-Embedded Triboelectric Generator for Versatile Mechanical Energy Harvesting. Scientific Reports, 2015, 5, 16409.	1.6	31
46	High-performance nanopattern triboelectric generator by block copolymer lithography. Nano Energy, 2015, 12, 331-338.	8.2	146
47	Vertically stacked thin triboelectric nanogenerator for wind energy harvesting. Nano Energy, 2015, 14, 201-208.	8.2	170
48	A Core Compact Model for Multiple-Gate Junctionless FETs. IEEE Transactions on Electron Devices, 2015, 62, 2285-2291.	1.6	12
49	Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy, 2015, 17, 63-71.	8.2	126
50	3-Dimensional broadband energy harvester based on internal hydrodynamic oscillation with a package structure. Nano Energy, 2015, 17, 82-90.	8.2	60
51	Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester. , 2014, , .		0
52	High-performance thin-film transistors produced from highly separated solution-processed carbon nanotubes. Applied Physics Letters, 2014, 104, .	1.5	23
53	Natureâ€Replicated Nanoâ€inâ€Micro Structures for Triboelectric Energy Harvesting. Small, 2014, 10, 3887-3894.	5.2	163
54	A mechanical and electrical transistor structure (METS) with a sub-2 nm nanogap for effective voltage scaling. Nanoscale, 2014, 6, 7799.	2.8	13

#	Article	IF	Citations
55	Piezoelectric nanogenerator with a nanoforest structure. Nano Energy, 2013, 2, 1142-1148.	8.2	49
56	A novel SiNW/CMOS hybrid biosensor for high sensitivity/low noise. , 2013, , .		10
57	Design Strategy for a Piezoelectric Nanogenerator with a Well-Ordered Nanoshell Array. ACS Nano, 2013, 7, 10773-10779.	7.3	60
58	Sensitive and selective electrochemical detection of dopamine using an electrode modified with carboxylated carbonaceous spheres. Analyst, The, 2013, 138, 2683.	1.7	70
59	A pH sensor with a double-gate silicon nanowire field-effect transistor. Applied Physics Letters, 2013, 102, .	1.5	46
60	Back Cover: Transfer of functional memory devices to any substrate (Phys. Status Solidi RRL 5/2013). Physica Status Solidi - Rapid Research Letters, 2013, 7, .	1.2	0
61	Transfer of functional memory devices to any substrate. Physica Status Solidi - Rapid Research Letters, 2013, 7, 326-331.	1.2	7
62	Terahertz time-domain spectroscopy of anisotropic complex conductivity tensors in silicon nanowire films. Applied Physics Letters, 2012, 100, 211102.	1.5	12
63	Effects of the oxygen vacancy concentration in InGaZnO-based resistance random access memory. Applied Physics Letters, 2012, 101, .	1.5	55
64	A nanoforest structure for practical surface-enhanced Raman scattering substrates. Nanotechnology, 2012, 23, 095301.	1.3	25
65	Self-Aligned Nanoforest in Silicon Nanowire for Sensitive Conductance Modulation. Nano Letters, 2012, 12, 5603-5608.	4.5	18
66	Hybrid Porphyrin–Silicon Nanowire Field-Effect Transistor by Opto-Electrical Excitation. ACS Nano, 2012, 6, 7885-7892.	7.3	25
67	Porphyrin–Silicon Hybrid Field-Effect Transistor with Individually Addressable Top-gate Structure. ACS Nano, 2012, 6, 183-189.	7.3	23
68	Nonvolatile memory with graphene oxide as a charge storage node in nanowire field-effect transistors. Applied Physics Letters, 2012, 100, .	1.5	11
69	Hollow CuO nanospheres uniformly anchored on porous Si nanowires: preparation and their potential use as electrochemical sensors. Nanoscale, 2012, 4, 7525.	2.8	55
70	A transistor-based biosensor for the extraction of physical properties from biomolecules. Applied Physics Letters, 2012, 101, 073703.	1.5	71
71	Micropatterning Polydiacetylene Supramolecular Vesicles on Glass Substrates using a Preâ€Patterned Hydrophobic Thin Film. Macromolecular Chemistry and Physics, 2012, 213, 610-616.	1.1	12
72	Nanowire FET Biosensors on a Bulk Silicon Substrate. IEEE Transactions on Electron Devices, 2012, 59, 2243-2249.	1.6	19

#	Article	IF	CITATIONS
73	Transformable Functional Nanoscale Building Blocks with Wafer-Scale Silicon Nanowires. Nano Letters, 2011, 11, 854-859.	4.5	16
74	A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4552-4556.	4.0	606
75	Bioâ€Inspired Complementary Photoconductor by Porphyrinâ€Coated Silicon Nanowires. Advanced Materials, 2011, 23, 3979-3983.	11.1	29
76	Multi-layer nanogap array for high-performance SERS substrate. Nanotechnology, 2011, 22, 235303.	1.3	5