
Ana Claudia Torrecilhas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/346588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ocular Disease in Mice Inoculated with Pork Heart Samples Infected with <i>Toxoplasma gondii</i> . Ocular Immunology and Inflammation, 2022, 30, 463-469.	1.0	2
2	Isolation and molecular characterization of circulating extracellular vesicles from blood of chronic Chagas disease patients. Cell Biology International, 2022, 46, 883-894.	1.4	6
3	Toxoplasmosis in Human and Animals Around the World. Diagnosis and Perspectives in the One Health Approach. Acta Tropica, 2022, 231, 106432.	0.9	31
4	Malaria parasites release vesicle subpopulations with signatures of different destinations. EMBO Reports, 2022, 23, .	2.0	18
5	New Biomarker in Chagas Disease: Extracellular Vesicles Isolated from Peripheral Blood in Chronic Chagas Disease Patients Modulate the Human Immune Response. Journal of Immunology Research, 2021, 2021, 1-14.	0.9	15
6	Distinct immunomodulatory properties of extracellular vesicles released by different strains of <i>Acanthamoeba</i> . Cell Biology International, 2021, 45, 1060-1071.	1.4	12
7	Editorial: Extracellular Vesicles in Infectious Diseases. Frontiers in Cellular and Infection Microbiology, 2021, 11, 697919.	1.8	4
8	Malaria parasites both repress host CXCL10 and use it as a cue for growth acceleration. Nature Communications, 2021, 12, 4851.	5.8	22
9	Stress Induces Release of Extracellular Vesicles by Trypanosoma cruzi Trypomastigotes. Journal of Immunology Research, 2021, 2021, 1-12.	0.9	10
10	Long-Term In Vitro Passaging Had a Negligible Effect on Extracellular Vesicles Released by Leishmania amazonensis and Induced Protective Immune Response in BALB/c Mice. Journal of Immunology Research, 2021, 2021, 1-13.	0.9	5
11	Extracellular vesicles in parasitic disease. , 2020, , 179-198.		3
12	Leishmania amazonensis Promastigotes or Extracellular Vesicles Modulate B-1 Cell Activation and Differentiation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 573813.	1.8	7
13	Immunomodulatory Properties of Leishmania Extracellular Vesicles During Host-Parasite Interaction: Differential Activation of TLRs and NF-IºB Translocation by Dermotropic and Viscerotropic Species. Frontiers in Cellular and Infection Microbiology, 2020, 10, 380.	1.8	26
14	The future of Extracellular Vesicles as Theranostics – an ISEV meeting report. Journal of Extracellular Vesicles, 2020, 9, 1809766.	5.5	77
15	Extracellular Vesicles in Trypanosomatids: Host Cell Communication. Frontiers in Cellular and Infection Microbiology, 2020, 10, 602502.	1.8	47
16	Novel structural CYP51 mutation in Trypanosoma cruzi associated with multidrug resistance to CYP51 inhibitors and reduced infectivity. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 13, 107-120.	1.4	8
17	Effects of extracellular vesicles released by peritoneal B-1 cells on experimental <i>Leishmania</i> (<i>Leishmania</i>) <i>amazonensis</i> infection. Journal of Leukocyte Biology, 2020, 108, 1803-1814.	1.5	14
18	Extracellular Vesicles isolated from Mesenchymal Stromal Cells Modulate CD4+ T Lymphocytes Toward a Regulatory Profile. Cells, 2020, 9, 1059.	1.8	21

#	Article	IF	CITATIONS
19	Trypanosoma cruzi-Infected Human Macrophages Shed Proinflammatory Extracellular Vesicles That Enhance Host-Cell Invasion via Toll-Like Receptor 2. Frontiers in Cellular and Infection Microbiology, 2020, 10, 99.	1.8	41
20	Helietta apiculata: a tropical weapon against Chagas disease. Natural Product Research, 2019, 33, 3308-3311.	1.0	1
21	Intraspecies Polymorphisms in the Lipophosphoglycan of L. braziliensis Differentially Modulate Macrophage Activation via TLR4. Frontiers in Cellular and Infection Microbiology, 2019, 9, 240.	1.8	17
22	Antitrypanosomal activity and effect in plasma membrane permeability of (â^')-bornyl p-coumarate isolated from Piper cernuum (Piperaceae). Bioorganic Chemistry, 2019, 89, 103001.	2.0	20
23	Dehydrodieugenol B derivatives as antiparasitic agents: Synthesis and biological activity against Trypanosoma cruzi. European Journal of Medicinal Chemistry, 2019, 176, 162-174.	2.6	12
24	TLR9/MyD88/TRIF signaling activates host immune inhibitory CD200 in Leishmania infection. JCI Insight, 2019, 4, .	2.3	31
25	Extracellular vesicles isolated from Trypanosoma cruzi affect early parasite migration in the gut of Rhodnius prolixus but not in Triatoma infestans. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e190217.	0.8	11
26	Hybrid Design as a Strategy for Development of Trypanocidal Drugs. Journal of Pharmaceutical Research International, 2019, 25, 1-15.	1.0	5
27	Proteomic analysis reveals different composition of extracellular vesicles released by two <i>Trypanosoma cruzi</i> strains associated with their distinct interaction with host cells. Journal of Extracellular Vesicles, 2018, 7, 1463779.	5.5	67
28	An overview on <i>Leishmania</i> (<i>Mundinia</i>) <i>enriettii</i> : biology, immunopathology, LRV and extracellular vesicles during the host–parasite interaction. Parasitology, 2018, 145, 1265-1273.	0.7	19
29	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
30	Extracellular Vesicles Released by Leishmania (Leishmania) amazonensis Promote Disease Progression and Induce the Production of Different Cytokines in Macrophages and B-1 Cells. Frontiers in Microbiology, 2018, 9, 3056.	1.5	62
31	OIP5 Expression Sensitize Glioblastoma Cells to Lomustine Treatment. Journal of Molecular Neuroscience, 2018, 66, 383-389.	1.1	4
32	Pyrazinoates as antiparasitic agents against <i>Trypanosoma cruzi</i> . Archiv Der Pharmazie, 2018, 351, e1800190.	2.1	0
33	Extracellular Vesicles From Sporothrix brasiliensis Are an Important Virulence Factor That Induce an Increase in Fungal Burden in Experimental Sporotrichosis. Frontiers in Microbiology, 2018, 9, 2286.	1.5	84
34	Extracellular vesicles isolated from <i>Toxoplasma gondii</i> induce host immune response. Parasite Immunology, 2018, 40, e12571.	0.7	40
35	Alternative Host Models for Testing Anti-Protozoal or Antifungal Compounds and Fungal Infection. Current Topics in Medicinal Chemistry, 2018, 18, 300-311.	1.0	1

36 1â€[(2,3â€Dihydroâ€1â€benzofuranâ€2â€yl) methyl]piperazines as novel antiâ€inflammatory compounds: Synthesis and evaluation on H<sub>3

#	Article	IF	CITATIONS
37	Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. Journal of Extracellular Vesicles, 2017, 6, 1396823.	5.5	185
38	Leishmania enriettii (Muniz & Medina, 1948): A highly diverse parasite is here to stay. PLoS Pathogens, 2017, 13, e1006303.	2.1	28
39	Lipophosphoglycan polymorphisms do not affect Leishmania amazonensis development in the permissive vectors Lutzomyia migonei and Lutzomyia longipalpis. Parasites and Vectors, 2017, 10, 608.	1.0	17
40	Highlights of the São Paulo ISEV workshop on extracellular vesicles in crossâ€kingdom communication. Journal of Extracellular Vesicles, 2017, 6, 1407213.	5.5	38
41	Lipophosphoglycans from Leishmania amazonensis Strains Display Immunomodulatory Properties via TLR4 and Do Not Affect Sand Fly Infection. PLoS Neglected Tropical Diseases, 2016, 10, e0004848.	1.3	47
42	Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 74-84.	1.4	10
43	Vesicles from different <i>Trypanosoma cruzi</i> strains trigger differential innate and chronic immune responses. Journal of Extracellular Vesicles, 2015, 4, 28734.	5.5	99
44	Extracellular Vesicles: Role in Inflammatory Responses and Potential Uses in Vaccination in Cancer and Infectious Diseases. Journal of Immunology Research, 2015, 2015, 1-14.	0.9	64
45	Characterization of Trypanosoma cruzi Sirtuins as Possible Drug Targets for Chagas Disease. Antimicrobial Agents and Chemotherapy, 2015, 59, 4669-4679.	1.4	36
46	Leishmania enriettii: biochemical characterisation of lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) and infectivity to Cavia porcellus. Parasites and Vectors, 2015, 8, 31.	1.0	25
47	Targeting Cell Division Cycle 25 Homolog B To Regulate Influenza Virus Replication. Journal of Virology, 2013, 87, 13775-13784.	1.5	20
48	NLRP3 Controls Trypanosoma cruzi Infection through a Caspase-1-Dependent IL-1R-Independent NO Production. PLoS Neglected Tropical Diseases, 2013, 7, e2469.	1.3	108
49	Vesicles as carriers of virulence factors in parasitic protozoan diseases. Microbes and Infection, 2012, 14, 1465-1474.	1.0	85
50	Intraspecies Variation in Trypanosoma cruzi GPI-Mucins: Biological Activities and Differential Expression of α-Galactosyl Residues. American Journal of Tropical Medicine and Hygiene, 2012, 87, 87-96.	0.6	34
51	<i>In vivo</i> infection by <i>Trypanosoma cruzi</i> : The conserved FLY domain of the gp85/trans-sialidase family potentiates host infection. Parasitology, 2011, 138, 481-492.	0.7	18
52	Chagas' disease: an update on immune mechanisms and therapeutic strategies. Journal of Cellular and Molecular Medicine, 2010, 14, 1373-1384.	1.6	53
53	The anticancer drug tamoxifen is active against Trypanosoma cruzi in vitro but ineffective in the treatment of the acute phase of Chagas disease in mice. Memorias Do Instituto Oswaldo Cruz, 2010, 105, 945-948.	0.8	11
54	<i>In Vitro</i> and <i>In Vivo</i> Trypanocidal Effects of the Cyclopalladated Compound 7a, a Drug Candidate for Treatment of Chagas' Disease. Antimicrobial Agents and Chemotherapy, 2010, 54, 3318-3325.	1.4	48

#	Article	IF	CITATIONS
55	Role of the gp85/Trans-Sialidases in Trypanosoma cruzi Tissue Tropism: Preferential Binding of a Conserved Peptide Motif to the Vasculature In Vivo. PLoS Neglected Tropical Diseases, 2010, 4, e864.	1.3	47
56	GPIomics: global analysis of glycosylphosphatidylinositolâ€anchored molecules of <i>Trypanosoma cruzi</i> . Molecular Systems Biology, 2009, 5, 261.	3.2	77
57	Glucose uptake in the mammalian stages of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 2009, 168, 102-108.	0.5	68
58	Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes and Infection, 2009, 11, 29-39.	1.0	180
59	Cooperative Activation of TLR2 and Bradykinin B2 Receptor Is Required for Induction of Type 1 Immunity in a Mouse Model of Subcutaneous Infection by <i>Trypanosoma cruzi</i> . Journal of Immunology, 2006, 177, 6325-6335.	0.4	81
60	The Surface Coat of the Mammal-dwelling Infective Trypomastigote Stage of Trypanosoma cruzi Is Formed by Highly Diverse Immunogenic Mucins. Journal of Biological Chemistry, 2004, 279, 15860-15869.	1.6	79
61	Stimulation of Toll-like Receptor 2 by Coxiella burnetii Is Required for Macrophage Production of Pro-inflammatory Cytokines and Resistance to Infection. Journal of Biological Chemistry, 2004, 279, 54405-54415.	1.6	84
62	Glycosylphosphatidylinositol-Anchored Mucin-Like Glycoproteins from <i>Trypanosoma cruzi</i> Bind to CD1d but Do Not Elicit Dominant Innate or Adaptive Immune Responses Via the CD1d/NKT Cell Pathway. Journal of Immunology, 2002, 169, 3926-3933.	0.4	68
63	Detection and clinical significance of lymphocytotoxic antibodies following renal transplantation. Transplantation Proceedings, 2002, 34, 482-483.	0.3	2
64	Interference of natural mouse hepatitis virus infection with cytokine production and susceptibility toTrypanosoma cruzi. Immunology, 1999, 96, 381-388.	2.0	8
65	Characterization of Extracellular vesicles isolated from different Liquid biopsies of uveal melanoma patients. Journal of Circulating Biomarkers, 0, 11, 36-47.	0.8	10