## **Inge Mannaerts**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3465783/publications.pdf Version: 2024-02-01



INCE MANNAEDTS

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes<br>Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.               | 6.6 | 384       |
| 2  | A role for autophagy during hepatic stellate cell activation. Journal of Hepatology, 2011, 55, 1353-1360.                                                                                 | 1.8 | 317       |
| 3  | The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. Journal of<br>Hepatology, 2015, 63, 679-688.                                                              | 1.8 | 284       |
| 4  | Novel human hepatic organoid model enables testing of drug-induced liver fibrosis inÂvitro.<br>Biomaterials, 2016, 78, 1-10.                                                              | 5.7 | 181       |
| 5  | Generation of Hepatic Stellate Cells from Human Pluripotent Stem Cells Enables InÂVitro Modeling of<br>Liver Fibrosis. Cell Stem Cell, 2018, 23, 101-113.e7.                              | 5.2 | 170       |
| 6  | FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Scientific Reports, 2016, 6, 33453.                                             | 1.6 | 168       |
| 7  | Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice.<br>Science, 2019, 366, 1029-1034.                                                      | 6.0 | 140       |
| 8  | Valproic Acid Attenuates Proteinuria and Kidney Injury. Journal of the American Society of<br>Nephrology: JASN, 2011, 22, 1863-1875.                                                      | 3.0 | 109       |
| 9  | Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells <i>in vitro</i> and <i>in vivo</i> . Hepatology, 2010, 51, 603-614.                           | 3.6 | 97        |
| 10 | Integrative miRNA and Gene Expression Profiling Analysis of Human Quiescent Hepatic Stellate Cells.<br>Scientific Reports, 2015, 5, 11549.                                                | 1.6 | 79        |
| 11 | HDAC inhibitors in experimental liver and kidney fibrosis. Fibrogenesis and Tissue Repair, 2013, 6, 1.                                                                                    | 3.4 | 71        |
| 12 | Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human<br>liver cells and activated hepatic stellate cells. Oncotarget, 2015, 6, 26729-26745. | 0.8 | 61        |
| 13 | Class II HDAC Inhibition Hampers Hepatic Stellate Cell Activation by Induction of MicroRNA-29. PLoS ONE, 2013, 8, e55786.                                                                 | 1.1 | 56        |
| 14 | Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis. Toxicology and Applied Pharmacology, 2013, 271, 276-284.                           | 1.3 | 54        |
| 15 | Prospects in non-invasive assessment of liver fibrosis: Liquid biopsy as the future gold standard?.<br>Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1024-1036. | 1.8 | 41        |
| 16 | Circulating ECV-Associated miRNAs as Potential Clinical Biomarkers in Early Stage HBV and HCV<br>Induced Liver Fibrosis. Frontiers in Pharmacology, 2017, 8, 56.                          | 1.6 | 37        |
| 17 | Gene Expression Profiling of Early Hepatic Stellate Cell Activation Reveals a Role for Igfbp3 in Cell<br>Migration. PLoS ONE, 2013, 8, e84071.                                            | 1.1 | 37        |
| 18 | InÂvivo hepatocyte MR imaging using lactose functionalized magnetoliposomes. Biomaterials, 2014, 35,<br>1015-1024.                                                                        | 5.7 | 32        |

INGE MANNAERTS

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The role of miRNAs in stress-responsive hepatic stellate cells during liver fibrosis. Frontiers in Physiology, 2015, 6, 209.                                                                            | 1.3 | 31        |
| 20 | Unfolded protein response is an early, non-critical event during hepatic stellate cell activation. Cell<br>Death and Disease, 2019, 10, 98.                                                             | 2.7 | 27        |
| 21 | Directed differentiation of human induced pluripotent stem cells to hepatic stellate cells. Nature<br>Protocols, 2021, 16, 2542-2563.                                                                   | 5.5 | 26        |
| 22 | A PDGFRβ-based score predicts significant liver fibrosis in patients with chronic alcohol abuse, NAFLD and viral liver disease. EBioMedicine, 2019, 43, 501-512.                                        | 2.7 | 24        |
| 23 | Initiation of hepatic stellate cell activation extends into chronic liver disease. Cell Death and Disease, 2021, 12, 1110.                                                                              | 2.7 | 23        |
| 24 | Protective effect of genetic deletion of pannexin1 in experimental mouse models of acute and chronic<br>liver disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 819-830. | 1.8 | 22        |
| 25 | P311, Friend, or Foe of Tissue Fibrosis?. Frontiers in Pharmacology, 2018, 9, 1151.                                                                                                                     | 1.6 | 21        |
| 26 | The fibrotic response of primary liver spheroids recapitulates in vivo hepatic stellate cell activation.<br>Biomaterials, 2020, 261, 120335.                                                            | 5.7 | 21        |
| 27 | Functionality based method for simultaneous isolation of rodent hepatic sinusoidal cells.<br>Biomaterials, 2017, 139, 91-101.                                                                           | 5.7 | 17        |
| 28 | Capsaicin Modulates Proliferation, Migration, and Activation of Hepatic Stellate Cells. Cell<br>Biochemistry and Biophysics, 2014, 68, 387-396.                                                         | 0.9 | 16        |
| 29 | Inhibitory effect of dietary capsaicin on liver fibrosis in mice. Molecular Nutrition and Food Research, 2015, 59, 1107-1116.                                                                           | 1.5 | 16        |
| 30 | Endothelial Zeb2 preserves the hepatic angioarchitecture and protects against liver fibrosis.<br>Cardiovascular Research, 2022, 118, 1262-1275.                                                         | 1.8 | 16        |
| 31 | P311 modulates hepatic stellate cells migration. Liver International, 2015, 35, 1253-1264.                                                                                                              | 1.9 | 13        |
| 32 | Autophagy-Related Activation of Hepatic Stellate Cells Reduces Cellular miR-29a by Promoting Its<br>Vesicular Secretion. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1701-1716.   | 2.3 | 12        |
| 33 | Syncoilin is an intermediate filament protein in activated hepatic stellate cells. Histochemistry and<br>Cell Biology, 2014, 141, 85-99.                                                                | 0.8 | 10        |
| 34 | Gene Signatures Detect Damaged Liver Sinusoidal Endothelial Cells in Chronic Liver Diseases.<br>Frontiers in Medicine, 2021, 8, 750044.                                                                 | 1.2 | 9         |
| 35 | Review: Challenges of In Vitro CAF Modelling in Liver Cancers. Cancers, 2021, 13, 5914.                                                                                                                 | 1.7 | 3         |
| 36 | Reply:. Hepatology, 2010, 51, 2228-2228.                                                                                                                                                                | 3.6 | 1         |