
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3465690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (<i>Oryza sativa</i>). New Phytologist, 2022, 233, 655-669.	3.5	15
2	Mechanosensory trichome cells evoke a mechanical stimuli–induced immune response in Arabidopsis thaliana. Nature Communications, 2022, 13, 1216.	5.8	43
3	Cytokinin increases vegetative growth period by suppressing florigen expression in rice and maize. Plant Journal, 2022, 110, 1619-1635.	2.8	17
4	Functional roles of ALMTâ€ŧype anion channels in malateâ€induced stomatal closure in tomato and Arabidopsis. Plant, Cell and Environment, 2022, 45, 2337-2350.	2.8	3
5	Cadmium uptake via apoplastic bypass flow in Oryza sativa. Journal of Plant Research, 2021, 134, 1139-1148.	1.2	7
6	Possible roles for phytohormones in controlling the stomatal behavior of Mesembryanthemum crystallinum during the salt-induced transition from C3 to crassulacean acid metabolism. Journal of Plant Physiology, 2021, 262, 153448.	1.6	9
7	Salicylic Acid Acts Antagonistically to Plastid Retrograde Signaling by Promoting the Accumulation of Photosynthesis-associated Proteins in Arabidopsis. Plant and Cell Physiology, 2021, 62, 1728-1744.	1.5	12
8	Hormonal and transcriptional analyses of fruit development and ripening in different varieties of black pepper (Piper nigrum). Journal of Plant Research, 2020, 133, 73-94.	1.2	15
9	Manganese Treatment Alleviates Zinc Deficiency Symptoms in Arabidopsis Seedlings. Plant and Cell Physiology, 2020, 61, 1711-1723.	1.5	8
10	BdWRKY38 is required for the incompatible interaction of <i>Brachypodium distachyon</i> with the necrotrophic fungus <i>Rhizoctonia solani</i> . Plant Journal, 2020, 104, 995-1008.	2.8	18
11	Low temperature modulates natural peel degreening in lemon fruit independently of endogenous ethylene. Journal of Experimental Botany, 2020, 71, 4778-4796.	2.4	26
12	Interaction of intracellular hydrogen peroxide accumulation with nitric oxide production in abscisic acid signaling in guard cells. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1418-1426.	0.6	4
13	Application of the cellular oxidation biosensor to Toxicity Identification Evaluations for high-throughput toxicity assessment of river water. Chemosphere, 2020, 247, 125933.	4.2	5
14	The mechanism of SO ₂ â€induced stomatal closure differs from O ₃ and CO ₂ responses and is mediated by nonapoptotic cell death in guard cells. Plant, Cell and Environment, 2019, 42, 437-447.	2.8	12
15	Reactive oxygen species and reactive carbonyl species constitute a feedâ€forward loop in auxin signaling for lateral root formation. Plant Journal, 2019, 100, 536-548.	2.8	53
16	â€~Passe Crassane' pear fruit (Pyrus communis L.) ripening: Revisiting the role of low temperature via integrated physiological and transcriptome analysis. Postharvest Biology and Technology, 2019, 158, 110949.	2.9	18
17	Plant hormone profiling in developing seeds of common wheat (<i>Triticum aestivum</i> L.). Breeding Science, 2019, 69, 601-610.	0.9	14
18	Salicylic acidâ€dependent immunity contributes to resistance against <i>Rhizoctonia solani</i> , a necrotrophic fungal agent of sheath blight, in rice and <i>Brachypodium distachyon</i> . New Phytologist, 2018, 217, 771-783.	3.5	102

#	Article	IF	CITATIONS
19	Circumnutation and distribution of phytohormones in Vigna angularis epicotyls. Journal of Plant Research, 2018, 131, 165-178.	1.2	4
20	Disruption of ureide degradation affects plant growth and development during and after transition from vegetative to reproductive stages. BMC Plant Biology, 2018, 18, 287.	1.6	25
21	A Cyclic Nucleotide-Gated Channel, HvCNGC2-3, Is Activated by the Co-Presence of Na+ and K+ and Permeable to Na+ and K+ Non-Selectively. Plants, 2018, 7, 61.	1.6	12
22	Environmental Toxicity and Evaluation. , 2018, , 71-94.		1
23	Phytohormones in red seaweeds: a technical review of methods for analysis and a consideration of genomic data. Botanica Marina, 2017, 60, .	0.6	24
24	Ectopic accumulation of linalool confers resistance to <i>Xanthomonas citri</i> subsp <i>. citri</i> in transgenic sweet orange plants. Tree Physiology, 2017, 37, 654-664.	1.4	24
25	MPK9 and MPK12 function in SA-induced stomatal closure in <i>Arabidopsis thaliana</i> . Bioscience, Biotechnology and Biochemistry, 2017, 81, 1394-1400.	0.6	26
26	Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Scientific Reports, 2017, 7, 4017.	1.6	105
27	Effect of Phytohormones on Seedling Vigor of Rice under Cold Conditions. Japanese Journal of Crop Science, 2017, 86, 367-374.	0.1	0
28	Quantitative Proteomic Analysis of the Response to Zinc, Magnesium, and Calcium Deficiency in Specific Cell Types of Arabidopsis Roots. Proteomes, 2016, 4, 1.	1.7	25
29	Involvement of OST1 Protein Kinase and PYR/PYL/RCAR Receptors in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Guard Cells. Plant and Cell Physiology, 2016, 57, 1779-1790.	1.5	42
30	Two Members of the Aluminum-Activated Malate Transporter Family, <i>SIALMT4</i> and <i>SIALMT5</i> , are Expressed during Fruit Development, and the Overexpression of <i>SIALMT5</i> Alters Organic Acid Contents in Seeds in Tomato (<i>Solanum lycopersicum</i>). Plant and Cell Physiology, 2016, 57, 2367-2379.	1.5	33
31	Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. Journal of Experimental Botany, 2016, 67, 2519-2532.	2.4	154
32	Endogenous hormone levels affect the regeneration ability of callus derived from different organs in barley. Plant Physiology and Biochemistry, 2016, 99, 66-72.	2.8	36
33	Glutamate functions in stomatal closure in Arabidopsis and fava bean. Journal of Plant Research, 2016, 129, 39-49.	1.2	61
34	Comprehensive quantification and genome survey reveal the presence of novel phytohormone action modes in red seaweeds. Journal of Applied Phycology, 2016, 28, 2539-2548.	1.5	47
35	Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots. Plant Journal, 2015, 84, 323-334.	2.8	88
36	Diverse Stomatal Signaling and the Signal Integration Mechanism. Annual Review of Plant Biology, 2015, 66, 369-392.	8.6	321

IZUMI C MORI

#	Article	IF	CITATIONS
37	A High-Throughput Oxidative Stress Biosensor Based on Escherichia coli roGFP2 Cells Immobilized in a k-Carrageenan Matrix. Sensors, 2015, 15, 2354-2368.	2.1	21
38	ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signalling pathways in Arabidopsis. Journal of Experimental Botany, 2015, 66, 2763-2771.	2.4	53
39	Open Stomata 1 Kinase is Essential for Yeast Elicitor-Induced Stomatal Closure in Arabidopsis. Plant and Cell Physiology, 2015, 56, 1239-1248.	1.5	18
40	Allyl isothiocyanate induces stomatal closure in <i>Vicia faba</i> . Bioscience, Biotechnology and Biochemistry, 2015, 79, 1737-1742.	0.6	23
41	Toxicity of tetramethylammonium hydroxide to aquatic organisms and its synergistic action with potassium iodide. Chemosphere, 2015, 120, 299-304.	4.2	49
42	Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene. PLoS ONE, 2015, 10, e0123308.	1.1	46
43	CO2 Transport by PIP2 Aquaporins of Barley. Plant and Cell Physiology, 2014, 55, 251-257.	1.5	75
44	Identification of quantitative trait loci for abscisic acid responsiveness in the D-genome of hexaploid wheat. Journal of Plant Physiology, 2014, 171, 830-841.	1.6	16
45	Identification of quantitative trait locus for abscisic acid responsiveness on chromosome 5A and association with dehydration tolerance in common wheat seedlings. Journal of Plant Physiology, 2014, 171, 25-34.	1.6	24
46	Negative Regulation of Methyl Jasmonate-Induced Stomatal Closure by Glutathione in Arabidopsis. Journal of Plant Growth Regulation, 2013, 32, 208-215.	2.8	26
47	Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells. Journal of Plant Physiology, 2013, 170, 1212-1215.	1.6	24
48	Response of Rice to Insect Elicitors and the Role of Os <scp>JAR</scp> 1 in Wound and Herbivoryâ€ <scp>I</scp> nduced <scp>JA</scp> â€ <scp>I</scp> le Accumulation. Journal of Integrative Plant Biology, 2013, 55, 775-784.	4.1	56
49	Difference in Abscisic Acid Perception Mechanisms between Closure Induction and Opening Inhibition of Stomata Â. Plant Physiology, 2013, 163, 600-610.	2.3	58
50	Calcium-Dependent Protein Kinase CPK6 Positively Functions in Induction by Yeast Elicitor of Stomatal Closure and Inhibition by Yeast Elicitor of Light-Induced Stomatal Opening in Arabidopsis Â. Plant Physiology, 2013, 163, 591-599.	2.3	57
51	Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione. Frontiers in Plant Science, 2013, 4, 472.	1.7	60
52	Glucosinolate Degradation Products, Isothiocyanates, Nitriles, and Thiocyanates, Induce Stomatal Closure Accompanied by Peroxidase-Mediated Reactive Oxygen Species Production in <i>Arabidopsis thaliana</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 977-983.	0.6	73
53	Neither Endogenous Abscisic Acid nor Endogenous Jasmonate Is Involved in Salicylic Acid-, Yeast Elicitor-, or Chitosan-Induced Stomatal Closure in <i>Arabidopsis thaliana</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 1111-1113.	0.6	25
54	Identification of Cyclic GMP-Activated Nonselective Ca2+-Permeable Cation Channels and Associated <i>CNGC5</i> and <i>CNGC6</i> Genes in Arabidopsis Guard Cells Â. Plant Physiology, 2013, 163, 578-590.	2.3	111

#	Article	IF	CITATIONS
55	FIA functions as an early signal component of abscisic acid signal cascade in Vicia faba guard cells. Journal of Experimental Botany, 2012, 63, 1357-1365.	2.4	20
56	Effects of Exogenous Proline and Glycinebetaine on the Salt Tolerance of Rice Cultivars. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1568-1570.	0.6	32
57	MAP Kinases, MPK9 and MPK12, Regulate Chitosan-Induced Stomatal Closure. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1785-1787.	0.6	34
58	Mechanisms of the Selenium Tolerance of theArabidopsis thalianaKnockout Mutant of Sulfate Transporter SULTR1;2. Bioscience, Biotechnology and Biochemistry, 2012, 76, 993-998.	0.6	8
59	Cooperative Function of PLDδ and PLDα1 in Abscisic Acid-Induced Stomatal Closure in Arabidopsis Â. Plant Physiology, 2012, 159, 450-460.	2.3	135
60	Effects of Depletion of Glutathione on Abscisic Acid- and Methyl Jasmonate-Induced Stomatal Closure in <i>Arabidopsis thaliana</i> . Bioscience, Biotechnology and Biochemistry, 2012, 76, 2032-2037.	0.6	24
61	Catalases negatively regulate methyl jasmonate signaling in guard cells. Journal of Plant Physiology, 2012, 169, 1012-1016.	1.6	18
62	Methylglyoxal inhibition of cytosolic ascorbate peroxidase from <i>Nicotiana tabacum</i> . Journal of Biochemical and Molecular Toxicology, 2012, 26, 315-321.	1.4	43
63	The Roles ofCATALASE2in Abscisic Acid Signaling inArabidopsisGuard Cells. Bioscience, Biotechnology and Biochemistry, 2011, 75, 2034-2036.	0.6	21
64	K252a-sensitive protein kinases but not okadaic acid-sensitive protein phosphatases regulate methyl jasmonate-induced cytosolic Ca2+ oscillation in guard cells of Arabidopsis thaliana. Journal of Plant Physiology, 2011, 168, 1901-1908.	1.6	7
65	Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells. Journal of Plant Physiology, 2011, 168, 1919-1926.	1.6	71
66	Negative regulation of abscisic acid-induced stomatal closure by glutathione in Arabidopsis. Journal of Plant Physiology, 2011, 168, 2048-2055.	1.6	68
67	Involvement of extracellular oxidative burst in salicylic acidâ€induced stomatal closure in <i>Arabidopsis</i> . Plant, Cell and Environment, 2011, 34, 434-443.	2.8	292
68	Allyl isothiocyanate (AITC) induces stomatal closure in <i>Arabidopsis</i> . Plant, Cell and Environment, 2011, 34, 1900-1906.	2.8	93
69	Viability of barley seeds after long-term exposure to outer side of international space station. Advances in Space Research, 2011, 48, 1155-1160.	1.2	6
70	ABA signaling in stomatal guard cells: lessons from Commelina and Vicia. Journal of Plant Research, 2011, 124, 477-487.	1.2	15
71	Involvement of Endogenous Abscisic Acid in Methyl Jasmonate-Induced Stomatal Closure in Arabidopsis Â. Plant Physiology, 2011, 156, 430-438.	2.3	189
72	The Arabidopsis Calcium-Dependent Protein Kinase, CPK6, Functions as a Positive Regulator of Methyl Jasmonate Signaling in Guard Cells Â. Plant Physiology, 2011, 155, 553-561.	2.3	144

#	Article	IF	CITATIONS
73	Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. Plant Signaling and Behavior, 2011, 6, 939-941.	1.2	67
74	Closing Plant Stomata Requires a Homolog of an Aluminum-Activated Malate Transporter. Plant and Cell Physiology, 2010, 51, 354-365.	1.5	159
75	Roles of AtTPC1, Vacuolar Two Pore Channel 1, in Arabidopsis Stomatal Closure. Plant and Cell Physiology, 2010, 51, 302-311.	1.5	86
76	Chitosan-Induced Stomatal Closure Accompanied by Peroxidase-Mediated Reactive Oxygen Species Production in <i>Arabidopsis</i> . Bioscience, Biotechnology and Biochemistry, 2010, 74, 2313-2315.	0.6	65
77	Yeast Elicitor-Induced Stomatal Closure and Peroxidase-Mediated ROS Production in Arabidopsis. Plant and Cell Physiology, 2010, 51, 1915-1921.	1.5	75
78	A Bacterial Biosensor for Oxidative Stress Using the Constitutively Expressed Redox-Sensitive Protein roGFP2. Sensors, 2010, 10, 6290-6306.	2.1	41
79	Cytosolic Alkalization and Cytosolic Calcium Oscillation in Arabidopsis Guard Cells Response to ABA and MeJA. Plant and Cell Physiology, 2010, 51, 1721-1730.	1.5	72
80	The Involvement of Intracellular Glutathione in Methyl Jasmonate Signaling inArabidopsisGuard Cells. Bioscience, Biotechnology and Biochemistry, 2010, 74, 2504-2506.	0.6	25
81	The Effects of Methylglyoxal on Clutathione <i>S</i> -Transferase from <i>Nicotiana tabacum</i> . Bioscience, Biotechnology and Biochemistry, 2010, 74, 2124-2126.	0.6	55
82	Myrosinases, TGG1 and TGG2, Redundantly Function in ABA and MeJA Signaling in Arabidopsis Guard Cells. Plant and Cell Physiology, 2009, 50, 1171-1175.	1.5	87
83	Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signaling and Behavior, 2009, 4, 119-120.	1.2	42
84	Integration of ROS and Hormone Signaling. Signaling and Communication in Plants, 2009, , 25-42.	0.5	11
85	Exogenous Proline and Glycinebetaine Suppress Apoplastic Flow to Reduce Na ⁺ Uptake in Rice Seedlings. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2037-2042.	0.6	40
86	Deficient Glutathione in Guard Cells Facilitates Abscisic Acid-Induced Stomatal Closure but Does Not Affect Light-Induced Stomatal Opening. Bioscience, Biotechnology and Biochemistry, 2008, 72, 2795-2798.	0.6	47
87	Roles of RCN1, Regulatory A Subunit of Protein Phosphatase 2A, in Methyl Jasmonate Signaling and Signal Crosstalk between Methyl Jasmonate and Abscisic Acid. Plant and Cell Physiology, 2008, 49, 1396-1401.	1.5	84
88	CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca2+- Permeable Channels and Stomatal Closure. PLoS Biology, 2006, 4, e327.	2.6	523
89	Protein Kinase Cascade Involved in Rapid ABA-signaling in Guard Cells of Vicia faba. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 769-773.	0.6	3
90	Reactive Oxygen Species Activation of Plant Ca2+ Channels. A Signaling Mechanism in Polar Growth, Hormone Transduction, Stress Signaling, and Hypothetically Mechanotransduction: Figure 1 Plant Physiology, 2004, 135, 702-708.	2.3	364

#	Article	IF	CITATIONS
91	NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal, 2003, 22, 2623-2633.	3.5	1,474
92	Convergence of Calcium Signaling Pathways of Pathogenic Elicitors and Abscisic Acid in Arabidopsis Guard Cells Â. Plant Physiology, 2002, 130, 2152-2163.	2.3	222
93	Phenylethylamine Induces an Increase in Cytosolic Ca2+in Yeast. Bioscience, Biotechnology and Biochemistry, 2002, 66, 1069-1074.	0.6	14
94	Abscisic Acid Activation of Plasma Membrane Ca ²⁺ Channels in Guard Cells Requires Cytosolic NAD(P)H and Is Differentially Disrupted Upstream and Downstream of Reactive Oxygen Species Production in <i>abi1-1</i> and <i>abi2-1</i> Protein Phosphatase 2C Mutants. Plant Cell, 2001, 13, 2513-2523.	3.1	530
95	Involvement of Superoxide Generation in Salicylic Acid-Induced Stomatal Closure in Vicia faba. Plant and Cell Physiology, 2001, 42, 1383-1388.	1.5	186
96	Sugar-Induced Increase in Cytosolic Ca2+ in Arabidopsis thaliana Whole Plants. Plant and Cell Physiology, 2001, 42, 1149-1155.	1.5	48
97	Abscisic Acid Activation of Plasma Membrane Ca 2+ Channels in Guard Cells Requires Cytosolic NAD(P)H and Is Differentially Disrupted Upstream and Downstream of Reactive Oxygen Species Production in abi1-1 and abi2-1 Protein Phosphatase 2C Mutants. Plant Cell, 2001, 13, 2513.	3.1	13
98	A CALCIUMâ€ÐEPENDENT PROTEIN KINASE FUNCTIONS IN WOUND HEALING IN VENTRICARIA VENTRICOSA (CHLOROPHYTA). Journal of Phycology, 2000, 36, 1145-1152.	1.0	20
99	Phosphorylation of the Inward-Rectifying Potassium Channel KAT1 by ABR Kinase in Vicia Guard Cells. Plant and Cell Physiology, 2000, 41, 850-856.	1.5	48
100	Salicylic Acid Induces a Cytosolic Ca2+Elevation in Yeast. Bioscience, Biotechnology and Biochemistry, 1998, 62, 986-989.	0.6	16