Xuefeng Guo

List of Publications by Citations

Source: https://exaly.com/author-pdf/346396/xuefeng-guo-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

167
papers7,973
citations49
h-index86
g-index183
ext. papers9,200
ext. citations13
avg, IF6.24
L-index

#	Paper	IF	Citations
167	Molecular-Scale Electronics: From Concept to Function. <i>Chemical Reviews</i> , 2016 , 116, 4318-440	68.1	746
166	Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. <i>Science</i> , 2016 , 352, 1443-5	33.3	529
165	Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. <i>Science</i> , 2006 , 311, 356-9	33.3	390
164	Conductivity of a single DNA duplex bridging a carbon nanotube gap. <i>Nature Nanotechnology</i> , 2008 , 3, 163-7	28.7	287
163	Reversible switching in molecular electronic devices. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12590-1	16.4	256
162	Molecule-electrode interfaces in molecular electronic devices. <i>Chemical Society Reviews</i> , 2013 , 42, 564	2- 60 .5	195
161	Concepts in the design and engineering of single-molecule electronic devices. <i>Nature Reviews Physics</i> , 2019 , 1, 211-230	23.6	191
160	Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Materials, 2012, 4, e23-e23	10.3	180
159	Molecular electronic devices based on single-walled carbon nanotube electrodes. <i>Accounts of Chemical Research</i> , 2008 , 41, 1731-41	24.3	169
158	Direct conductance measurement of individual metallo-DNA duplexes within single-molecule break junctions. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8886-90	16.4	160
157	Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor. <i>Advanced Materials</i> , 2012 , 24, 2715-20	24	158
156	Directing and sensing changes in molecular conformation on individual carbon nanotube field effect transistors. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15045-7	16.4	151
155	Conductance switching and mechanisms in single-molecule junctions. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8666-70	16.4	131
154	Chemoresponsive monolayer transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 11452-6	11.5	131
153	Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors. <i>Nano Letters</i> , 2011 , 11, 4939-46	11.5	128
152	Direct optical characterization of graphene growth and domains on growth substrates. <i>Scientific Reports</i> , 2012 , 2, 707	4.9	120
151	Building high-throughput molecular junctions using indented graphene point contacts. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12228-32	16.4	115

150	Rapid flu diagnosis using silicon nanowire sensor. <i>Nano Letters</i> , 2012 , 12, 3722-30	11.5	114
149	High-Performance Photoresponsive Organic Nanotransistors with Single-Layer Graphenes as Two-Dimensional Electrodes. <i>Advanced Functional Materials</i> , 2009 , 19, 2743-2748	15.6	110
148	Carbon Electrode-Molecule Junctions: A Reliable Platform for Molecular Electronics. <i>Accounts of Chemical Research</i> , 2015 , 48, 2565-75	24.3	109
147	Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2863		107
146	Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. <i>Nano Research</i> , 2015 , 8, 3496-3504	10	98
145	Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. <i>Chemical Reviews</i> , 2020 , 120, 2879-2949	68.1	92
144	Single-molecule detection of proteins using aptamer-functionalized molecular electronic devices. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2496-502	16.4	86
143	Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors. <i>Coordination Chemistry Reviews</i> , 2010 , 254, 1101-1116	23.2	86
142	Solution-processable, low-voltage, and high-performance monolayer field-effect transistors with aqueous stability and high sensitivity. <i>Advanced Materials</i> , 2015 , 27, 2113-20	24	85
141	Photoresponsive nanoscale columnar transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 691-6	11.5	85
140	Single-molecule electrical biosensors based on single-walled carbon nanotubes. <i>Advanced Materials</i> , 2013 , 25, 3397-408	24	81
139	Design of a Photoactive Hybrid Bilayer Dielectric for Flexible Nonvolatile Organic Memory Transistors. <i>ACS Nano</i> , 2016 , 10, 436-45	16.7	77
138	Tunable hybrid photodetectors with superhigh responsivity. <i>Small</i> , 2009 , 5, 2371-6	11	74
137	Current trends in shrinking the channel length of organic transistors down to the nanoscale. <i>Advanced Materials</i> , 2010 , 22, 20-32	24	74
136	Single-molecule devices as scaffolding for multicomponent nanostructure assembly. <i>Nano Letters</i> , 2007 , 7, 1119-22	11.5	74
135	A universal etching-free transfer of MoS2 films for applications in photodetectors. <i>Nano Research</i> , 2015 , 8, 3662-3672	10	7 ²
134	Direct Conductance Measurement of Individual Metallo-DNA Duplexes within Single-Molecule Break Junctions. <i>Angewandte Chemie</i> , 2011 , 123, 9048-9052	3.6	72
133	Interface-Engineered Plasmonics in Metal/Semiconductor Heterostructures. <i>Advanced Energy Materials</i> , 2016 , 6, 1600431	21.8	72

132	High-performance Langmuir-Blodgett monolayer transistors with high responsivity. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6319-23	16.4	71
131	Light-driven photochromism-induced reversible switching in P3HT日piropyran hybrid transistors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4261-4265		69
130	Toward functional molecular devices based on graphene-molecule junctions. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3906-10	16.4	69
129	Photoactive gate dielectrics. <i>Advanced Materials</i> , 2010 , 22, 3282-7	24	67
128	Ultrasensitive water-processed monolayer photodetectors. <i>Chemical Science</i> , 2011 , 2, 796	9.4	60
127	Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols. <i>Environmental Science & Environmental Science & Environ</i>	10.3	59
126	Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. <i>Nature Communications</i> , 2018 , 9, 807	17.4	56
125	TiO2-decorated graphenes as efficient photoswitches with high oxygen sensitivity. <i>Chemical Science</i> , 2011 , 2, 1860	9.4	56
124	Stereoelectronic Effect-Induced Conductance Switching in Aromatic Chain Single-Molecule Junctions. <i>Nano Letters</i> , 2017 , 17, 856-861	11.5	55
123	An organicIhorganic hybrid perovskite logic gate for better computing. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10793-10798	7.1	55
122	Complex formation dynamics in a single-molecule electronic device. <i>Science Advances</i> , 2016 , 2, e16011	13 :4.3	55
121	Direct single-molecule dynamic detection of chemical reactions. <i>Science Advances</i> , 2018 , 4, eaar2177	14.3	54
120	Side-group chemical gating via reversible optical and electric control in a single molecule transistor. <i>Nature Communications</i> , 2019 , 10, 1450	17.4	53
119	Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. Journal of Materials Chemistry, 2011 , 21, 11760		49
118	Interface-engineered bistable [2]rotaxane-graphene hybrids with logic capabilities. <i>Advanced Materials</i> , 2013 , 25, 6752-9	24	44
117	Flexible Filter-Free Narrowband Photodetector with High Gain and Customized Responsive Spectrum. <i>Advanced Functional Materials</i> , 2017 , 27, 1702360	15.6	44
116	Mirror-image photoswitching of individual single-walled carbon nanotube transistors coated with		
	titanium dioxide. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 4759-62	16.4	42

(2018-2020)

114	IMAVA, a Metabolite of Intestinal Microbes, Is Increased in Plasma From Patients With Liver Steatosis, Inhibits Butyrobetaine Hydroxylase, and Exacerbates Fatty Liver in Mice. Gastroenterology, 2020, 158, 2266-2281.e27	13.3	37	
113	Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. <i>Accounts of Chemical Research</i> , 2020 , 53, 159-169	24.3	37	
112	Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states. <i>Nature Communications</i> , 2019 , 10, 3872	17.4	36	
111	Graphene-DNAzyme Junctions: A Platform for Direct Metal Ion Detection with Ultrahigh Sensitivity. <i>Chemical Science</i> , 2015 , 6, 2469-2473	9.4	36	
110	Tuning Charge Transport in Aromatic-Ring Single-Molecule Junctions via Ionic-Liquid Gating. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 14026-14031	16.4	36	
109	Label-Free Dynamic Detection of Single-Molecule Nucleophilic-Substitution Reactions. <i>Nano Letters</i> , 2018 , 18, 4156-4162	11.5	34	
108	14%-efficiency fullerene-free ternary solar cell enabled by designing a short side-chain substituted small-molecule acceptor. <i>Nano Energy</i> , 2019 , 64, 103934	17.1	34	
107	Unique role of self-assembled monolayers in carbon nanomaterial-based field-effect transistors. <i>Small</i> , 2013 , 9, 1144-59	11	33	
106	Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. <i>Nano Research</i> , 2016 , 9, 2445-2457	10	32	
105	Solution-crystallized organic semiconductors with high carrier mobility and air stability. <i>Advanced Materials</i> , 2012 , 24, 5576-80, 5518	24	32	
104	Single-Atom Switches and Single-Atom Gaps Using Stretched Metal Nanowires. ACS Nano, 2016 , 10, 96	59 5-9 .70	232	
103	Switching Effects in Molecular Electronic Devices. <i>Topics in Current Chemistry</i> , 2017 , 375, 56	7.2	31	
102	Universal Coating from Electrostatic Self-Assembly to Prevent Multidrug-Resistant Bacterial Colonization on Medical Devices and Solid Surfaces. <i>ACS Applied Materials & Devices and Solid Surfaces</i> . <i>2017</i> , 9, 2	11815-21	189	
101	Nanocrystalline Perovskite Hybrid Photodetectors with High Performance in Almost Every Figure of Merit. <i>Advanced Functional Materials</i> , 2018 , 28, 1705589	15.6	31	
100	High-Performance Langmuir B lodgett Monolayer Transistors with High Responsivity. <i>Angewandte Chemie</i> , 2010 , 122, 6463-6467	3.6	30	
99	Direct real-time detection of single proteins using silicon nanowire-based electrical circuits. Nanoscale, 2016 , 8, 16172-16176	7.7	28	
98	Building High-Throughput Molecular Junctions Using Indented Graphene Point Contacts. <i>Angewandte Chemie</i> , 2012 , 124, 12394-12398	3.6	26	
97	Towards single-molecule optoelectronic devices. <i>Science China Chemistry</i> , 2018 , 61, 1368-1384	7.9	25	

96	Single-Molecule Electrical Detection with Real-Time Label-Free Capability and Ultrasensitivity. <i>Small Methods</i> , 2017 , 1, 1700071	12.8	24
95	Synergistic Photomodulation of Capacitive Coupling and Charge Separation Toward Functional Organic Field-Effect Transistors with High Responsivity. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500159	6.4	24
94	Photocontrol of charge injection/extraction at electrode/semiconductor interfaces for high-photoresponsivity organic transistors. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5289-5296	7.1	24
93	Ultrafast probes of electron-hole transitions between two atomic layers. <i>Nature Communications</i> , 2018 , 9, 1859	17.4	23
92	Electrical and spin switches in single-molecule junctions. <i>Informal</i> Materilly, 2020 , 2, 92-112	23.1	22
91	Quasi-one-dimensional graphene superlattices formed on high-index surfaces. <i>Physical Review B</i> , 2014 , 89,	3.3	21
90	Point decoration of silicon nanowires: an approach toward single-molecule electrical detection. Angewandte Chemie - International Edition, 2014 , 53, 5038-43	16.4	21
89	Substrate-induced interfacial plasmonics for photovoltaic conversion. <i>Scientific Reports</i> , 2015 , 5, 14497	4.9	21
88	Langmuir B logett monolayer transistors of copper phthalocyanine. <i>Applied Physics Letters</i> , 2009 , 95, 033304	3.4	21
87	Integrating reaction chemistry into molecular electronic devices. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 1040-57	4.5	21
86	Electric field-catalyzed single-molecule Diels-Alder reaction dynamics. Science Advances, 2021, 7,	14.3	20
85	Thermally Activated Tunneling Transition in a Photoswitchable Single-Molecule Electrical Junction. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 2849-2854	6.4	18
84	Large-scale aligned crystalline CH3NH3PbI3 perovskite array films. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18847-18851	13	18
83	Revealing the direct effect of individual intercalations on DNA conductance toward single-molecule electrical biodetection. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 5150-5154	7-3	18
82	Tuning Charge Transport in Aromatic-Ring Single-Molecule Junctions via Ionic-Liquid Gating. <i>Angewandte Chemie</i> , 2018 , 130, 14222-14227	3.6	18
81	Single-Molecule Detection of Proteins Using Aptamer-Functionalized Molecular Electronic Devices. <i>Angewandte Chemie</i> , 2011 , 123, 2544-2550	3.6	17
80	Mirror-Image Photoswitching in a Single Organic Thin-Film Transistor. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1269-1276	6.4	17
79	Catalyst: The Renaissance of Molecular Electronics. <i>CheM</i> , 2017 , 3, 373-376	16.2	16

(2017-2016)

78	Substrate-Induced Graphene Chemistry for 2D Superlattices with Tunable Periodicities. <i>Advanced Materials</i> , 2016 , 28, 2148-54	24	16
77	Tuning the properties of graphene using a reversible gas-phase reaction. <i>NPG Asia Materials</i> , 2012 , 4, e31-e31	10.3	14
76	Toward Functional Molecular Devices Based on Graphene Molecule Junctions. <i>Angewandte Chemie</i> , 2013 , 125, 3998-4002	3.6	14
75	Fabrication of Chemical Graphene Nanoribbons via Edge-Selective Covalent Modification. <i>Advanced Materials</i> , 2015 , 27, 4093-6	24	13
74	Conductance Switching and Mechanisms in Single-Molecule Junctions. <i>Angewandte Chemie</i> , 2013 , 125, 8828-8832	3.6	13
73	High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode. <i>Nano Letters</i> , 2016 , 16, 3600-6	11.5	13
72	Control of Unipolar/Ambipolar Transport in Single-Molecule Transistors through Interface Engineering. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901237	6.4	13
71	Unveiling the full reaction path of the Suzuki-Miyaura cross-coupling in a single-molecule junction. <i>Nature Nanotechnology</i> , 2021 , 16, 1214-1223	28.7	13
70	Revealing Charge- and Temperature-Dependent Movement Dynamics and Mechanism of Individual Molecular Machines. <i>Small Methods</i> , 2019 , 3, 1900464	12.8	12
69	Point Decoration of Silicon Nanowires: An Approach Toward Single-Molecule Electrical Detection. <i>Angewandte Chemie</i> , 2014 , 126, 5138-5143	3.6	12
68	Direct Measurement of Single-Molecule Adenosine Triphosphatase Hydrolysis Dynamics. <i>ACS Nano</i> , 2017 , 11, 12789-12795	16.7	12
67	Single-Molecule Nanotechnologies: An Evolution in Biological Dynamics Detection <i>ACS Applied Bio Materials</i> , 2020 , 3, 68-85	4.1	12
66	Improving Photovoltaic Stability and Performance of Perovskite Solar Cells by Molecular Interface Engineering. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 1219-1225	3.8	12
65	Concentration-tailored self-assembly composition and function of the coordinating self-assembly of perylenetetracarboxylate. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8936-8943	7.1	11
64	Precise control of graphene etching by remote hydrogen plasma. <i>Nano Research</i> , 2019 , 12, 137-142	10	11
63	Ultrahigh Photogain Nanoscale Hybrid Photodetectors. Small, 2015, 11, 2856-61	11	10
62	Active Self-Assembled Monolayer Sensors for Trace Explosive Detection. <i>Langmuir</i> , 2020 , 36, 1462-146	64	10
61	Single Nucleotide Polymorphism Genotyping in Single-Molecule Electronic Circuits. <i>Advanced Science</i> , 2017 , 4, 1700158	13.6	10

60	Logic Control of Interface-Induced Charge-Trapping Effect for Ultrasensitive Gas Detection with All-Mirror-Image Symmetry. <i>Advanced Materials Technologies</i> , 2016 , 1, 1600067	6.8	10
59	Functional molecular electronic devices through environmental control. <i>Science China Materials</i> , 2019 , 62, 1-7	7.1	9
58	Mirror-Image Photoswitching of Individual Single-Walled Carbon Nanotube Transistors Coated with Titanium Dioxide. <i>Angewandte Chemie</i> , 2009 , 121, 4853-4856	3.6	9
57	Functional single-molecule devices based on SWNTs as point contacts. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5470		9
56	An accurate, high-speed, portable bifunctional electrical detector for COVID-19. <i>Science China Materials</i> , 2021 , 64, 739-747	7.1	9
55	Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 22554-22562	16.4	9
54	A single-molecule electrical approach for amino acid detection and chirality recognition. <i>Science Advances</i> , 2021 , 7,	14.3	9
53	Molecule-Based Transistors: From Macroscale to Single Molecule. <i>Chemical Record</i> , 2021 , 21, 1284-1299	6.6	8
52	Ultrasensitive Detection and Binding Mechanism of Cocaine in an Aptamer-based Single-molecule Device. <i>Chinese Journal of Chemistry</i> , 2019 , 37, 897-902	4.9	8
51	Frontispiece: Point Decoration of Silicon Nanowires: An Approach Toward Single-Molecule Electrical Detection. <i>Angewandte Chemie - International Edition</i> , 2014 , 53,	16.4	8
50	Efficient Fabrication of Stable Graphene-Molecule-Graphene Single-Molecule Junctions at Room Temperature. <i>ChemPhysChem</i> , 2018 , 19, 2258-2265	3.2	7
49	Fabrication and functions of graphene-molecule-graphene single-molecule junctions. <i>Journal of Chemical Physics</i> , 2020 , 152, 120902	3.9	6
48	Real-time observation of the dynamics of an individual rotaxane molecular shuttle using a single-molecule junction. <i>CheM</i> , 2021 ,	16.2	6
47	Atomically Precise Engineering of Single-Molecule Stereoelectronic Effect. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12274-12278	16.4	6
46	Single-molecule electrical spectroscopy of organocatalysis. <i>Matter</i> , 2021 , 4, 2874-2885	12.7	6
45	Single-Molecule Junction: A Reliable Platform for Monitoring Molecular Physical and Chemical Processes <i>ACS Nano</i> , 2022 ,	16.7	6
44	High-Efficiency Photovoltaic Conversion at Selective Electron Tunneling Heterointerfaces. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700211	6.4	5
43	Interface-engineered charge separation at selective electron tunneling heterointerfaces. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 2125-2131	7.8	5

42	Recent progress in single-molecule transistors: their designs, mechanisms and applications. <i>Journal of Materials Chemistry C</i> ,	7.1	5
41	Preparation of highly oriented single crystal arrays of C8-BTBT by epitaxial growth on oriented isotactic polypropylene. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 2155-2159	7.1	5
40	Direct Measurement of Single-Molecule DNA Hybridization Dynamics with Single-Base Resolution. <i>Angewandte Chemie</i> , 2016 , 128, 9182-9186	3.6	5
39	Structural Transition Dynamics in Carbon Electrode-Based Single-Molecule Junctions. <i>Chinese Journal of Chemistry</i> , 2021 , 39, 223-231	4.9	5
38	Dual-gated single-molecule field-effect transistors beyond Moore's law <i>Nature Communications</i> , 2022 , 13, 1410	17.4	5
37	Single-molecule field effect and conductance switching driven by electric field and proton transfer <i>Science Advances</i> , 2022 , 8, eabm3541	14.3	5
36	Molecular Electronics: Challenges and Opportunities. AIMS Materials Science, 2014, 1, 11-14	1.9	4
35	Building nanogapped graphene electrode arrays by electroburning RSC Advances, 2018, 8, 6814-6819	3.7	3
34	Recent Advances in Photochemical Reactions on Single-Molecule Electrical Platforms <i>Macromolecular Rapid Communications</i> , 2022 , e2200017	4.8	3
33	Tunable Symmetry-Breaking-Induced Dual Functions in Stable and Photoswitched Single-Molecule Junctions. <i>Journal of the American Chemical Society</i> , 2021 ,	16.4	3
32	Crystallization Mechanism of 9,9-Diphenyl-dibenzosilole from Solids. <i>ChemPhysChem</i> , 2020 , 21, 181-186	5 3.2	3
31	Principles of Molecular Machines at the Single-Molecule Scale1484-1502		3
30	Molecular Engineering: A Key Route to Improve the Performance of Molecular Devices. <i>Matter</i> , 2020 , 2, 284-285	12.7	2
29	Revealing Interface-Assisted Charge-Transfer Mechanisms by Using Silicon Nanowires as Local Probes. <i>Angewandte Chemie</i> , 2013 , 125, 3453-3457	3.6	2
28	Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. <i>Angewandte Chemie</i> , 2020 , 132, 22743-22751	3.6	2
27	Temperature-Triggered Supramolecular Assembly of Organic Semiconductors. <i>Advanced Materials</i> , 2021 , e2101487	24	2
26	Field-Effect Transistors: Unique Role of Self-Assembled Monolayers in Carbon Nanomaterial-Based Field-Effect Transistors (Small 8/2013). <i>Small</i> , 2013 , 9, 1122-1122	11	1
25	Biosensors: Single-Molecule Electrical Biosensors Based on Single-Walled Carbon Nanotubes (Adv. Mater. 25/2013). <i>Advanced Materials</i> , 2013 , 25, 3390-3390	24	1

24	Cross-Scale Synthesis of Organic High- Semiconductors Based on Spiro-Gridized Nanopolymers <i>Research</i> , 2022 , 2022, 9820585	7.8	1
23	Accurate Single-Molecule Indicator of Solvent Effects <i>Jacs Au</i> , 2021 , 1, 2271-2279		1
22	Direct mechano-sliding transfer of chemical vapor deposition grown silicon nanowires for nanoscale electronic devices. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 469-475	7.1	1
21	Precise Control of Interfacial Charge Transport for Building Functional Optoelectronic Devices. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800358	6.8	1
20	Origin and mechanism analysis of asymmetric current fluctuations in single-molecule junctions <i>RSC Advances</i> , 2018 , 8, 39408-39413	3.7	1
19	Stochastic Binding Dynamics of a Photoswitchable Single Supramolecular Complex <i>Advanced Science</i> , 2022 , e2200022	13.6	1
18	Single-Molecule Fullerenes: Current Stage and Perspective1037-1052		1
17	Complete Mapping of DNA-Protein Interactions at the Single-Molecule Level. <i>Advanced Science</i> , 2021 , 8, e2101383	13.6	O
16	Revealing Conformational Transition Dynamics of Photosynthetic Proteins in Single-Molecule Electrical Circuits. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 3853-3859	6.4	0
15	Dipole-improved gating of azulene-based single-molecule transistors. <i>Journal of Materials Chemistry C</i> ,	7.1	O
14	Single-molecule optoelectronic devices: physical mechanism and beyond. <i>Opto-Electronic Advances</i> , 2022 , 5, 210094-210094	6.5	0
13	Organic Field-Effect Transistors: Solution-Processable, Low-Voltage, and High-Performance Monolayer Field-Effect Transistors with Aqueous Stability and High Sensitivity (Adv. Mater. 12/2015). <i>Advanced Materials</i> , 2015 , 27, 2124-2124	24	
12	Organic Semiconductors: Solution-Crystallized Organic Semiconductors with High Carrier Mobility and Air Stability (Adv. Mater. 41/2012). <i>Advanced Materials</i> , 2012 , 24, 5518-5518	24	
11	Summary and Perspectives 2020 , 375-388		
10	Other Electrodes for Molecular Electronics 2020 , 113-117		
9	Novel Phenomena in Single-Molecule Junctions 2020 , 119-135		
8	Theoretical Aspects for Electron Transport Through Molecular Junctions 2020 , 209-224		
7	Metal Electrodes for Molecular Electronics 2020 , 7-91		

LIST OF PUBLICATIONS

- 6 Supramolecular Interactions in Single-Molecule Junctions **2020**, 137-155
- 5 Characterization Techniques for Molecular Electronics **2020**, 157-207
- 4 Integrating Molecular Functionalities into Electrical Circuits 2020, 225-374
- 3 Carbon Electrodes for Molecular Electronics **2020**, 93-112
- Atomically Precise Engineering of Single-Molecule Stereoelectronic Effect. *Angewandte Chemie*, **2021**, 133, 12382-12386
- Molecular Physics: Revealing Charge- and Temperature-Dependent Movement Dynamics and Mechanism of Individual Molecular Machines (Small Methods 12/2019). *Small Methods*, **2019**, 3, 1970041^{12.8}