Xuefeng Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/346396/publications.pdf Version: 2024-02-01

XUFFENC CUO

#	Article	IF	CITATIONS
1	Molecular-Scale Electronics: From Concept to Function. Chemical Reviews, 2016, 116, 4318-4440.	47.7	1,014
2	Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science, 2016, 352, 1443-1445.	12.6	697
3	Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules. Science, 2006, 311, 356-359.	12.6	438
4	Concepts in the design and engineering of single-molecule electronic devices. Nature Reviews Physics, 2019, 1, 211-230.	26.6	327
5	Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nature Nanotechnology, 2008, 3, 163-167.	31.5	308
6	Reversible Switching in Molecular Electronic Devices. Journal of the American Chemical Society, 2007, 129, 12590-12591.	13.7	282
7	Molecule–electrode interfaces in molecular electronic devices. Chemical Society Reviews, 2013, 42, 5642.	38.1	248
8	Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chemical Reviews, 2020, 120, 2879-2949.	47.7	213
9	Carbon nanomaterials field-effect-transistor-based biosensors. NPG Asia Materials, 2012, 4, e23-e23.	7.9	212
10	Molecular Electronic Devices Based on Single-Walled Carbon Nanotube Electrodes. Accounts of Chemical Research, 2008, 41, 1731-1741.	15.6	182
11	Direct Conductance Measurement of Individual Metalloâ€ÐNA Duplexes within Singleâ€Molecule Break Junctions. Angewandte Chemie - International Edition, 2011, 50, 8886-8890.	13.8	179
12	Understanding Charge Transfer at PbSâ€Decorated Graphene Surfaces toward a Tunable Photosensor. Advanced Materials, 2012, 24, 2715-2720.	21.0	177
13	Directing and Sensing Changes in Molecular Conformation on Individual Carbon Nanotube Field Effect Transistors. Journal of the American Chemical Society, 2005, 127, 15045-15047.	13.7	162
14	Conductance Switching and Mechanisms in Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2013, 52, 8666-8670.	13.8	158
15	Building Highâ€Throughput Molecular Junctions Using Indented Graphene Point Contacts. Angewandte Chemie - International Edition, 2012, 51, 12228-12232.	13.8	157
16	Chemoresponsive monolayer transistors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11452-11456.	7.1	141
17	Carbon Electrode–Molecule Junctions: A Reliable Platform for Molecular Electronics. Accounts of Chemical Research, 2015, 48, 2565-2575.	15.6	141
18	Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates. Scientific Reports, 2012, 2, 707.	3.3	137

#	Article	IF	CITATIONS
19	Interface Engineering of Semiconductor/Dielectric Heterojunctions toward Functional Organic Thin-Film Transistors. Nano Letters, 2011, 11, 4939-4946.	9.1	135
20	Rapid Flu Diagnosis Using Silicon Nanowire Sensor. Nano Letters, 2012, 12, 3722-3730.	9.1	135
21	Highâ€Performance Photoresponsive Organic Nanotransistors with Singleâ€Layer Graphenes as Twoâ€Dimensional Electrodes. Advanced Functional Materials, 2009, 19, 2743-2748.	14.9	115
22	Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions. Journal of Materials Chemistry, 2012, 22, 2863.	6.7	115
23	Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Research, 2015, 8, 3496-3504.	10.4	112
24	Singleâ€Molecule Electrical Biosensors Based on Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2013, 25, 3397-3408.	21.0	104
25	Singleâ€Molecule Detection of Proteins Using Aptamerâ€Functionalized Molecular Electronic Devices. Angewandte Chemie - International Edition, 2011, 50, 2496-2502.	13.8	100
26	Solutionâ€Processable, Lowâ€Voltage, and Highâ€Performance Monolayer Fieldâ€Effect Transistors with Aqueous Stability and High Sensitivity. Advanced Materials, 2015, 27, 2113-2120.	21.0	97
27	Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors. Coordination Chemistry Reviews, 2010, 254, 1101-1116.	18.8	96
28	Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nature Communications, 2019, 10, 1450.	12.8	96
29	Interfaceâ€Engineered Plasmonics in Metal/Semiconductor Heterostructures. Advanced Energy Materials, 2016, 6, 1600431.	19.5	95
30	Photoresponsive nanoscale columnar transistors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 691-696.	7.1	94
31	A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015, 8, 3662-3672.	10.4	94
32	Toward Functional Molecular Devices Based on Graphene–Molecule Junctions. Angewandte Chemie - International Edition, 2013, 52, 3906-3910.	13.8	91
33	Design of a Photoactive Hybrid Bilayer Dielectric for Flexible Nonvolatile Organic Memory Transistors. ACS Nano, 2016, 10, 436-445.	14.6	91
34	TMAVA, a Metabolite of Intestinal Microbes, Is Increased in Plasma From Patients With Liver Steatosis, Inhibits γ-Butyrobetaine Hydroxylase, and Exacerbates Fatty Liver in Mice. Gastroenterology, 2020, 158, 2266-2281.e27.	1.3	87
35	Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. Accounts of Chemical Research, 2020, 53, 159-169.	15.6	84
36	Current Trends in Shrinking the Channel Length of Organic Transistors Down to the Nanoscale. Advanced Materials, 2010, 22, 20-32.	21.0	83

#	Article	IF	CITATIONS
37	Complex formation dynamics in a single-molecule electronic device. Science Advances, 2016, 2, e1601113.	10.3	82
38	Highâ€Performance Langmuir–Blodgett Monolayer Transistors with High Responsivity. Angewandte Chemie - International Edition, 2010, 49, 6319-6323.	13.8	80
39	Integrating Silicon Nanowire Field Effect Transistor, Microfluidics and Air Sampling Techniques For Real-Time Monitoring Biological Aerosols. Environmental Science & Technology, 2011, 45, 7473-7480.	10.0	80
40	Single-Molecule Devices as Scaffolding for Multicomponent Nanostructure Assembly. Nano Letters, 2007, 7, 1119-1122.	9.1	78
41	Tunable Hybrid Photodetectors with Superhigh Responsivity. Small, 2009, 5, 2371-2376.	10.0	78
42	Direct observation of single-molecule hydrogen-bond dynamics with single-bond resolution. Nature Communications, 2018, 9, 807.	12.8	78
43	Direct single-molecule dynamic detection of chemical reactions. Science Advances, 2018, 4, eaar2177.	10.3	78
44	An organic–inorganic hybrid perovskite logic gate for better computing. Journal of Materials Chemistry C, 2015, 3, 10793-10798.	5.5	77
45	Stereoelectronic Effect-Induced Conductance Switching in Aromatic Chain Single-Molecule Junctions. Nano Letters, 2017, 17, 856-861.	9.1	76
46	Light-driven photochromism-induced reversible switching in P3HT–spiropyran hybrid transistors. Journal of Materials Chemistry, 2012, 22, 4261-4265.	6.7	75
47	Photoactive Gate Dielectrics. Advanced Materials, 2010, 22, 3282-3287.	21.0	71
48	Ultrasensitive water-processed monolayer photodetectors. Chemical Science, 2011, 2, 796.	7.4	71
49	TiO2-decorated graphenes as efficient photoswitches with high oxygen sensitivity. Chemical Science, 2011, 2, 1860.	7.4	59
50	Multicolor graphene nanoribbon/semiconductor nanowire heterojunction light-emitting diodes. Journal of Materials Chemistry, 2011, 21, 11760.	6.7	58
51	Flexible Filterâ€Free Narrowband Photodetector with High Gain and Customized Responsive Spectrum. Advanced Functional Materials, 2017, 27, 1702360.	14.9	57
52	Multistep nucleation and growth mechanisms of organic crystals from amorphous solid states. Nature Communications, 2019, 10, 3872.	12.8	57
53	Interfaceâ€Engineered Bistable [2]Rotaxaneâ€Graphene Hybrids with Logic Capabilities. Advanced Materials, 2013, 25, 6752-6759.	21.0	53
54	Direct Measurement of Singleâ€Molecule DNA Hybridization Dynamics with Singleâ€Base Resolution. Angewandte Chemie - International Edition, 2016, 55, 9036-9040.	13.8	53

#	Article	IF	CITATIONS
55	Tuning Charge Transport in Aromaticâ€Ring Singleâ€Molecule Junctions via Ionicâ€Liquid Gating. Angewandte Chemie - International Edition, 2018, 57, 14026-14031.	13.8	52
56	Single-Molecule Junction: A Reliable Platform for Monitoring Molecular Physical and Chemical Processes. ACS Nano, 2022, 16, 3476-3505.	14.6	52
57	Electric field–catalyzed single-molecule Diels-Alder reaction dynamics. Science Advances, 2021, 7, .	10.3	51
58	Label-Free Dynamic Detection of Single-Molecule Nucleophilic-Substitution Reactions. Nano Letters, 2018, 18, 4156-4162.	9.1	48
59	Electrical and spin switches in singleâ€molecule junctions. InformaÄnÃ-Materiály, 2020, 2, 92-112.	17.3	47
60	Unveiling the full reaction path of the Suzuki–Miyaura cross-coupling in a single-molecule junction. Nature Nanotechnology, 2021, 16, 1214-1223.	31.5	46
61	Mirror″mage Photoswitching of Individual Singleâ€Walled Carbon Nanotube Transistors Coated with Titanium Dioxide. Angewandte Chemie - International Edition, 2009, 48, 4759-4762.	13.8	43
62	Single-Atom Switches and Single-Atom Gaps Using Stretched Metal Nanowires. ACS Nano, 2016, 10, 9695-9702.	14.6	43
63	14%-efficiency fullerene-free ternary solar cell enabled by designing a short side-chain substituted small-molecule acceptor. Nano Energy, 2019, 64, 103934.	16.0	43
64	A single-molecule electrical approach for amino acid detection and chirality recognition. Science Advances, 2021, 7, .	10.3	43
65	Universal Coating from Electrostatic Self-Assembly to Prevent Multidrug-Resistant Bacterial Colonization on Medical Devices and Solid Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 21181-21189.	8.0	42
66	Nanocrystalline Perovskite Hybrid Photodetectors with High Performance in Almost Every Figure of Merit. Advanced Functional Materials, 2018, 28, 1705589.	14.9	42
67	Unique Role of Selfâ€Assembled Monolayers in Carbon Nanomaterialâ€Based Fieldâ€Effect Transistors. Small, 2013, 9, 1144-1159.	10.0	40
68	Graphene–DNAzyme junctions: a platform for direct metal ion detection with ultrahigh sensitivity. Chemical Science, 2015, 6, 2469-2473.	7.4	40
69	Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction. Nano Research, 2016, 9, 2445-2457.	10.4	40
70	Direct real-time detection of single proteins using silicon nanowire-based electrical circuits. Nanoscale, 2016, 8, 16172-16176.	5.6	40
71	Dual-gated single-molecule field-effect transistors beyond Moore's law. Nature Communications, 2022, 13, 1410.	12.8	38
72	Singleâ€Molecule Electrical Detection with Realâ€Time Labelâ€Free Capability and Ultrasensitivity. Small Methods, 2017, 1, 1700071.	8.6	36

#	Article	IF	CITATIONS
73	Towards single-molecule optoelectronic devices. Science China Chemistry, 2018, 61, 1368-1384.	8.2	36
74	Solutionâ€Crystallized Organic Semiconductors with High Carrier Mobility and Air Stability. Advanced Materials, 2012, 24, 5576-5580.	21.0	33
75	Switching Effects in Molecular Electronic Devices. Topics in Current Chemistry, 2017, 375, 56.	5.8	33
76	Point Decoration of Silicon Nanowires: An Approach Toward Singleâ€Molecule Electrical Detection. Angewandte Chemie - International Edition, 2014, 53, 5038-5043.	13.8	32
77	Ultrafast probes of electron–hole transitions between two atomic layers. Nature Communications, 2018, 9, 1859.	12.8	30
78	Tunable Symmetry-Breaking-Induced Dual Functions in Stable and Photoswitched Single-Molecule Junctions. Journal of the American Chemical Society, 2021, 143, 20811-20817.	13.7	30
79	Photocontrol of charge injection/extraction at electrode/semiconductor interfaces for high-photoresponsivity organic transistors. Journal of Materials Chemistry C, 2016, 4, 5289-5296.	5.5	29
80	An accurate, high-speed, portable bifunctional electrical detector for COVID-19. Science China Materials, 2021, 64, 739-747.	6.3	29
81	Real-time observation of the dynamics of an individual rotaxane molecular shuttle using a single-molecule junction. CheM, 2022, 8, 243-252.	11.7	29
82	Synergistic Photomodulation of Capacitive Coupling and Charge Separation Toward Functional Organic Fieldâ€Effect Transistors with High Responsivity. Advanced Electronic Materials, 2015, 1, 1500159.	5.1	28
83	Thermally Activated Tunneling Transition in a Photoswitchable Single-Molecule Electrical Junction. Journal of Physical Chemistry Letters, 2017, 8, 2849-2854.	4.6	27
84	Substrateâ€Induced Graphene Chemistry for 2D Superlattices with Tunable Periodicities. Advanced Materials, 2016, 28, 2148-2154.	21.0	26
85	Recent progress in single-molecule transistors: their designs, mechanisms and applications. Journal of Materials Chemistry C, 2022, 10, 2375-2389.	5.5	26
86	Langmuir–Blogett monolayer transistors of copper phthalocyanine. Applied Physics Letters, 2009, 95, .	3.3	24
87	Integrating Reaction Chemistry into Molecular Electronic Devices. Chemistry - an Asian Journal, 2010, 5, 1040-1057.	3.3	24
88	Substrate-induced interfacial plasmonics for photovoltaic conversion. Scientific Reports, 2015, 5, 14497.	3.3	24
89	Single-Molecule Nanotechnologies: An Evolution in Biological Dynamics Detection. ACS Applied Bio Materials, 2020, 3, 68-85.	4.6	24
90	Quasi-one-dimensional graphene superlattices formed on high-index surfaces. Physical Review B, 2014, 89, .	3.2	22

#	Article	IF	CITATIONS
91	Revealing the direct effect of individual intercalations on DNA conductance toward single-molecule electrical biodetection. Journal of Materials Chemistry B, 2015, 3, 5150-5154.	5.8	22
92	Tuning Charge Transport in Aromaticâ€Ring Singleâ€Molecule Junctions via Ionicâ€Liquid Gating. Angewandte Chemie, 2018, 130, 14222-14227.	2.0	22
93	Single-molecule field effect and conductance switching driven by electric field and proton transfer. Science Advances, 2022, 8, eabm3541.	10.3	22
94	Revealing Charge―and Temperatureâ€Dependent Movement Dynamics and Mechanism of Individual Molecular Machines. Small Methods, 2019, 3, 1900464.	8.6	21
95	Direct Measurement of Single-Molecule Adenosine Triphosphatase Hydrolysis Dynamics. ACS Nano, 2017, 11, 12789-12795.	14.6	20
96	Large-scale aligned crystalline CH ₃ NH ₃ PbI ₃ perovskite array films. Journal of Materials Chemistry A, 2015, 3, 18847-18851.	10.3	19
97	Moleculeâ€Based Transistors: From Macroscale to Single Molecule Chemical Record, 2021, 21, 1284-1299.	5.8	19
98	Catalyst: The Renaissance of Molecular Electronics. CheM, 2017, 3, 373-376.	11.7	18
99	Single Nucleotide Polymorphism Genotyping in Singleâ€Molecule Electronic Circuits. Advanced Science, 2017, 4, 1700158.	11.2	18
100	Active Self-Assembled Monolayer Sensors for Trace Explosive Detection. Langmuir, 2020, 36, 1462-1466.	3.5	18
101	Mirror-Image Photoswitching in a Single Organic Thin-Film Transistor. Journal of Physical Chemistry Letters, 2010, 1, 1269-1276.	4.6	17
102	Precise control of graphene etching by remote hydrogen plasma. Nano Research, 2019, 12, 137-142.	10.4	17
103	Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. Angewandte Chemie - International Edition, 2020, 59, 22554-22562.	13.8	17
104	Tuning the properties of graphene using a reversible gas-phase reaction. NPG Asia Materials, 2012, 4, e31-e31.	7.9	16
105	Concentration-tailored self-assembly composition and function of the coordinating self-assembly of perylenetetracarboxylate. Journal of Materials Chemistry C, 2017, 5, 8936-8943.	5.5	16
106	Improving Photovoltaic Stability and Performance of Perovskite Solar Cells by Molecular Interface Engineering. Journal of Physical Chemistry C, 2019, 123, 1219-1225.	3.1	16
107	Atomically Precise Engineering of Singleâ€Molecule Stereoelectronic Effect. Angewandte Chemie - International Edition, 2021, 60, 12274-12278.	13.8	16
108	Single-molecule electrical spectroscopy of organocatalysis. Matter, 2021, 4, 2874-2885.	10.0	15

#	Article	IF	CITATIONS
109	Fabrication of Chemical Graphene Nanoribbons via Edgeâ€&elective Covalent Modification. Advanced Materials, 2015, 27, 4093-4096.	21.0	14
110	Ultrahigh Photogain Nanoscale Hybrid Photodetectors. Small, 2015, 11, 2856-2861.	10.0	14
111	High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode. Nano Letters, 2016, 16, 3600-3606.	9.1	14
112	Control of Unipolar/Ambipolar Transport in Singleâ€Molecule Transistors through Interface Engineering. Advanced Electronic Materials, 2020, 6, 1901237.	5.1	14
113	Stochastic Binding Dynamics of a Photoswitchable Single Supramolecular Complex. Advanced Science, 2022, 9, e2200022.	11.2	13
114	Ultrasensitive Detection and Binding Mechanism of Cocaine in an Aptamerâ€based Singleâ€molecule Device. Chinese Journal of Chemistry, 2019, 37, 897-902.	4.9	12
115	Fabrication and functions of graphene–molecule–graphene single-molecule junctions. Journal of Chemical Physics, 2020, 152, 120902.	3.0	12
116	Single-molecule optoelectronic devices: physical mechanism and beyond. Opto-Electronic Advances, 2022, 5, 210094-210094.	13.3	12
117	Functional single-molecule devices based on SWNTs as point contacts. Journal of Materials Chemistry, 2009, 19, 5470.	6.7	11
118	Functional molecular electronic devices through environmental control. Science China Materials, 2019, 62, 1-7.	6.3	11
119	Preparation of highly oriented single crystal arrays of C8-BTBT by epitaxial growth on oriented isotactic polypropylene. Journal of Materials Chemistry C, 2020, 8, 2155-2159.	5.5	11
120	Logic Control of Interfaceâ€Induced Chargeâ€Trapping Effect for Ultrasensitive Gas Detection with Allâ€Mirrorâ€Image Symmetry. Advanced Materials Technologies, 2016, 1, 1600067.	5.8	10
121	Efficient Fabrication of Stable Grapheneâ€Moleculeâ€Graphene Singleâ€Molecule Junctions at Room Temperature. ChemPhysChem, 2018, 19, 2258-2265.	2.1	10
122	Structural Transition Dynamics in Carbon <scp>Electrodeâ€Based Singleâ€Molecule</scp> Junctions. Chinese Journal of Chemistry, 2021, 39, 223-231.	4.9	10
123	Complete Mapping of DNAâ€Protein Interactions at the Singleâ€Molecule Level. Advanced Science, 2021, 8, e2101383.	11.2	10
124	Cross-Scale Synthesis of Organic High-k Semiconductors Based on Spiro-Gridized Nanopolymers. Research, 2022, 2022, 9820585.	5.7	10
125	Single-Molecule Fullerenes: Current Stage and Perspective. , 2022, 4, 1037-1052.		9
126	Single-molecule nano-optoelectronics: insights from physics. Reports on Progress in Physics, 2022, 85, 086401.	20.1	9

#	Article	IF	CITATIONS
127	Frontispiece: Point Decoration of Silicon Nanowires: An Approach Toward Singleâ€Molecule Electrical Detection. Angewandte Chemie - International Edition, 2014, 53, .	13.8	8
128	Temperatureâ€Triggered Supramolecular Assembly of Organic Semiconductors. Advanced Materials, 2022, 34, e2101487.	21.0	8
129	Principles of Molecular Machines at the Single-Molecule Scale. , 2021, 3, 1484-1502.		8
130	Accurate Single-Molecule Kinetic Isotope Effects. Journal of the American Chemical Society, 2022, , .	13.7	8
131	Recent Advances in Photochemical Reactions on Singleâ€Molecule Electrical Platforms. Macromolecular Rapid Communications, 2022, 43, e2200017.	3.9	8
132	Dipole-improved gating of azulene-based single-molecule transistors. Journal of Materials Chemistry C, 2022, 10, 7803-7809.	5.5	8
133	Direct Measurement of Singleâ€Molecule DNA Hybridization Dynamics with Singleâ€Base Resolution. Angewandte Chemie, 2016, 128, 9182-9186.	2.0	7
134	Revealing Conformational Transition Dynamics of Photosynthetic Proteins in Single-Molecule Electrical Circuits. Journal of Physical Chemistry Letters, 2021, 12, 3853-3859.	4.6	7
135	Complete deciphering of the dynamic stereostructures of a single aggregation-induced emission molecule. Matter, 2022, 5, 1224-1234.	10.0	6
136	Highâ€Efficiency Photovoltaic Conversion at Selective Electron Tunneling Heterointerfaces. Advanced Electronic Materials, 2017, 3, 1700211.	5.1	5
137	Interface-engineered charge separation at selective electron tunneling heterointerfaces. Materials Chemistry Frontiers, 2017, 1, 2125-2131.	5.9	5
138	Building nanogapped graphene electrode arrays by electroburning. RSC Advances, 2018, 8, 6814-6819.	3.6	5
139	Molecular Electronics: Challenges and Opportunities. AIMS Materials Science, 2014, 1, 11-14.	1.4	5
140	Direct mechano-sliding transfer of chemical vapor deposition grown silicon nanowires for nanoscale electronic devices. Journal of Materials Chemistry C, 2022, 10, 469-475.	5.5	5
141	Crystallization Mechanism of 9,9â€Diphenylâ€dibenzosilole from Solids. ChemPhysChem, 2020, 21, 181-186.	2.1	4
142	Molecular Engineering: A Key Route to Improve the Performance of Molecular Devices. Matter, 2020, 2, 284-285.	10.0	4
143	Unravelling Structural Dynamics within a Photoswitchable Single Peptide: A Step Towards Multimodal Bioinspired Nanodevices. Angewandte Chemie, 2020, 132, 22743-22751.	2.0	3

Biosensors: Singleâ€Molecule Electrical Biosensors Based on Singleâ€Walled Carbon Nanotubes (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10

#	Article	IF	CITATIONS
145	Accurate Single-Molecule Indicator of Solvent Effects. Jacs Au, 2021, 1, 2271-2279.	7.9	2
146	Precise edge functionalization and tailoring of graphene via solvent-controlled reactions. Carbon, 2022, 197, 519-525.	10.3	2
147	Organic Semiconductors: Solutionâ€Crystallized Organic Semiconductors with High Carrier Mobility and Air Stability (Adv. Mater. 41/2012). Advanced Materials, 2012, 24, 5518-5518.	21.0	1
148	Fieldâ€Effect Transistors: Unique Role of Selfâ€Assembled Monolayers in Carbon Nanomaterialâ€Based Fieldâ€Effect Transistors (Small 8/2013). Small, 2013, 9, 1122-1122.	10.0	1
149	Origin and mechanism analysis of asymmetric current fluctuations in single-molecule junctions. RSC Advances, 2018, 8, 39408-39413.	3.6	1
150	Precise Control of Interfacial Charge Transport for Building Functional Optoelectronic Devices. Advanced Materials Technologies, 2019, 4, 1800358.	5.8	1
151	A non-transmembrane channel formed by Ca2+-bound calsequestrin-2. Journal of General Physiology, 2022, 154, .	1.9	1
152	Frontispiz: Point Decoration of Silicon Nanowires: An Approach Toward Single-Molecule Electrical Detection. Angewandte Chemie, 2014, 126, n/a-n/a.	2.0	0
153	Organic Fieldâ€Effect Transistors: Solutionâ€Processable, Lowâ€Voltage, and Highâ€Performance Monolayer Fieldâ€Effect Transistors with Aqueous Stability and High Sensitivity (Adv. Mater. 12/2015). Advanced Materials, 2015, 27, 2124-2124.	21.0	0
154	Frontispiz: Tuning Charge Transport in Aromatic-Ring Single-Molecule Junctions via Ionic-Liquid Gating. Angewandte Chemie, 2018, 130, .	2.0	0
155	Frontispiece: Tuning Charge Transport in Aromatic-Ring Single-Molecule Junctions via Ionic-Liquid Gating. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0
156	Molecular Physics: Revealing Charge―and Temperatureâ€Dependent Movement Dynamics and Mechanism of Individual Molecular Machines (Small Methods 12/2019). Small Methods, 2019, 3, 1970041.	8.6	0
157	Atomically Precise Engineering of Singleâ€Molecule Stereoelectronic Effect. Angewandte Chemie, 2021, 133, 12382-12386.	2.0	0