
Jeffrey C S Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3463832/publications.pdf Version: 2024-02-01

IFFEDEV C S W/II

#	Article	IF	CITATIONS
1	Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nature Communications, 2015, 6, 8340.	12.8	578
2	Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 2002, 37, 37-48.	20.2	524
3	Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis, 2004, 221, 432-440.	6.2	397
4	A visible-light response vanadium-doped titania nanocatalyst by sol–gel method. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 509-515.	3.9	391
5	Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting. Catalysts, 2012, 2, 490-516.	3.5	391
6	Visible-Light Driven Overall Conversion of CO ₂ and H ₂ O to CH ₄ and O ₂ on 3D-SiC@2D-MoS ₂ Heterostructure. Journal of the American Chemical Society, 2018, 140, 14595-14598.	13.7	361
7	Artificial Photosynthesis over Crystalline TiO ₂ -Based Catalysts: Fact or Fiction?. Journal of the American Chemical Society, 2010, 132, 8398-8406.	13.7	343
8	Removal of NOx by photocatalytic processes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 14, 29-52.	11.6	304
9	In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation. Journal of Catalysis, 2006, 237, 393-404.	6.2	249
10	Plasmonic Photocatalyst for H ₂ Evolution in Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2011, 115, 210-216.	3.1	244
11	Selective photocatalytic reduction of CO2 into CH4 over Pt-Cu2O TiO2 nanocrystals: The interaction between Pt and Cu2O cocatalysts. Applied Catalysis B: Environmental, 2017, 202, 695-703.	20.2	216
12	Photo reduction of CO2 to methanol using optical-fiber photoreactor. Applied Catalysis A: General, 2005, 296, 194-200.	4.3	206
13	Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nature Communications, 2020, 11, 3043.	12.8	200
14	CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Applied Catalysis A: General, 2010, 380, 172-177.	4.3	139
15	Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight. Catalysis Communications, 2008, 9, 2073-2076.	3.3	138
16	Photoreduction of CO2 in an optical-fiber photoreactor: Effects of metals addition and catalyst carrier. Applied Catalysis A: General, 2008, 335, 112-120.	4.3	136
17	Photocatalytic Reduction of Greenhouse Gas CO2 to Fuel. Catalysis Surveys From Asia, 2009, 13, 30-40.	2.6	136
18	Chemical states of metal-loaded titania in the photoreduction of CO2. Catalysis Today, 2004, 97, 113-119.	4.4	134

#	Article	IF	CITATIONS
19	Theoretical Investigation of the Metal-Doped SrTiO ₃ Photocatalysts for Water Splitting. Journal of Physical Chemistry C, 2012, 116, 7897-7903.	3.1	134
20	Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy and Environmental Science, 2011, 4, 1487.	30.8	131
21	Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts. Catalysis Today, 2000, 63, 419-426.	4.4	123
22	Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol. Catalysis Letters, 2009, 131, 381-387.	2.6	122
23	Degradation and Mineralization of Carbamazepine Using an Electro-Fenton Reaction Catalyzed by Magnetite Nanoparticles Fixed on an Electrocatalytic Carbon Fiber Textile Cathode. Environmental Science & Technology, 2018, 52, 12667-12674.	10.0	121
24	VOC deep oxidation over Pt catalysts using hydrophobic supports. Catalysis Today, 1998, 44, 111-118.	4.4	119
25	Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy and Environmental Science, 2012, 5, 5305-5314.	30.8	115
26	P–N junction mechanism on improved NiO/TiO2 photocatalyst. Catalysis Communications, 2011, 12, 1307-1310.	3.3	111
27	In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Frontiers of Chemical Engineering in China, 2010, 4, 120-126.	0.6	107
28	Improved Photocatalytic Activity of Shell-Isolated Plasmonic Photocatalyst Au@SiO ₂ /TiO ₂ by Promoted LSPR. Journal of Physical Chemistry C, 2012, 116, 26535-26542.	3.1	105
29	On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catalysis Communications, 2012, 25, 78-82.	3.3	105
30	Functionalized Fe ₃ O ₄ @Silica Core–Shell Nanoparticles as Microalgae Harvester and Catalyst for Biodiesel Production. ChemSusChem, 2015, 8, 789-794.	6.8	105
31	Bimetallic Rh–Ni/BN catalyst for methane reforming with CO2. Chemical Engineering Journal, 2009, 148, 539-545.	12.7	103
32	Characterization of hydrogen-permselective microporous ceramic membranes. Journal of Membrane Science, 1994, 96, 275-287.	8.2	102
33	Visible-light response Cr-doped TiO2â^'XNX photocatalysts. Materials Chemistry and Physics, 2006, 100, 102-107.	4.0	100
34	Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor. Solar Energy Materials and Solar Cells, 2008, 92, 864-872.	6.2	98
35	Recent developments in the design of photoreactors for solar energy conversion from water splitting and CO2 reduction. Applied Catalysis A: General, 2018, 550, 122-141.	4.3	89
36	Application of Optical-fiber Photoreactor for CO2 Photocatalytic Reduction. Topics in Catalysis, 2008, 47, 131-136.	2.8	86

#	Article	IF	CITATIONS
37	Synthesis, characterization and enhanced photocatalytic CO ₂ reduction activity of graphene supported TiO ₂ nanocrystals with coexposed {001} and {101} facets. Physical Chemistry Chemical Physics, 2016, 18, 13186-13195.	2.8	84
38	A current perspective for photocatalysis towards the hydrogen production from biomass-derived organic substances and water. International Journal of Hydrogen Energy, 2020, 45, 18144-18159.	7.1	83
39	Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation. Applied Catalysis B: Environmental, 2012, 126, 172-179.	20.2	82
40	Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. International Journal of Hydrogen Energy, 2010, 35, 1523-1529.	7.1	81
41	A novel twin reactor for CO2 photoreduction to mimic artificial photosynthesis. Applied Catalysis B: Environmental, 2013, 132-133, 445-451.	20.2	81
42	Openmouthed β-SiC hollow-sphere with highly photocatalytic activity for reduction of CO2 with H2O. Applied Catalysis B: Environmental, 2017, 206, 158-167.	20.2	79
43	Photo reduction ofCO2to methanol viaTiO2photocatalyst. International Journal of Photoenergy, 2005, 7, 115-119.	2.5	75
44	Characterization of Boron-Nitride-Supported Pt Catalysts for the Deep Oxidation of Benzene. Journal of Catalysis, 2002, 210, 39-45.	6.2	73
45	Photocatalytic hydrogenation and reduction of CO2 over CuO/ TiO2 photocatalysts. Applied Surface Science, 2018, 454, 313-318.	6.1	72
46	Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation. Applied Catalysis B: Environmental, 2017, 219, 412-424.	20.2	71
47	An improved synthesis of ultrafiltration zirconia membranes via the sol–gel route using alkoxide precursor. Journal of Membrane Science, 2000, 167, 253-261.	8.2	67
48	A green catalyst for biodiesel production from jatropha oil: Optimization study. Biomass and Bioenergy, 2011, 35, 1739-1746.	5.7	67
49	Production of renewable fuels by the photohydrogenation of CO ₂ : effect of the Cu species loaded onto TiO ₂ photocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 4942-4951.	2.8	67
50	Continuous production of biodiesel in a packed-bed reactor using shell–core structural Ca(C3H7O3)2/CaCO3 catalyst. Chemical Engineering Journal, 2010, 158, 250-256.	12.7	65
51	Separation of oil from oily sludge by freezing and thawing. Water Research, 1999, 33, 1756-1759.	11.3	63
52	Hydrogen generation from photocatalytic water splitting over TiO2 thin film prepared by electron beam-induced deposition. International Journal of Hydrogen Energy, 2010, 35, 12005-12010.	7.1	63
53	A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting. Journal of Membrane Science, 2011, 382, 291-299.	8.2	63
54	Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10232-10237.	7.1	63

#	Article	IF	CITATIONS
55	A novel boron nitride supported Pt catalyst for VOC incineration. Applied Catalysis A: General, 2001, 219, 117-124.	4.3	61
56	Feasibility of CO2 Fixation via Artificial Rock Weathering. Industrial & Engineering Chemistry Research, 2001, 40, 3902-3905.	3.7	60
57	Copper and platinum doped titania for photocatalytic reduction of carbon dioxide. Applied Surface Science, 2018, 430, 475-487.	6.1	60
58	Mathematical analysis on catalytic dehydrogenation of ethylbenzene using ceramic membranes. Industrial & Engineering Chemistry Research, 1992, 31, 322-327.	3.7	56
59	Ultrafiltration of soybean oil/hexane extract by porous ceramic membranes. Journal of Membrane Science, 1999, 154, 251-259.	8.2	56
60	CO2 photocatalytic reduction over Pt deposited TiO2 nanocrystals with coexposed {101} and {001} facets: Effect of deposition method and Pt precursors. Catalysis Communications, 2017, 96, 1-5.	3.3	55
61	Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level. Journal of Hazardous Materials, 2013, 262, 717-725.	12.4	54
62	Synthesis of mesoporous titania thin films (MTTFs) with two different structures as photocatalysts for generating hydrogen from water splitting. Applied Energy, 2012, 100, 75-80.	10.1	52
63	Photo-enhanced hydrogenation of CO2 to mimic photosynthesis by CO co-feed in a novel twin reactor. Applied Energy, 2015, 147, 318-324.	10.1	52
64	Titania nanosheet photocatalysts with dominantly exposed (001) reactive facets for photocatalytic NOx abatement. Applied Catalysis B: Environmental, 2017, 219, 391-400.	20.2	52
65	A dual-function photocatalytic system for simultaneous separating hydrogen from water splitting and photocatalytic degradation of phenol in a twin-reactor. Applied Catalysis B: Environmental, 2018, 239, 268-279.	20.2	51
66	Photocatalytic conversion of CO2 to hydrocarbons by light-harvesting complex assisted Rh-doped TiO2 photocatalyst. Journal of CO2 Utilization, 2014, 5, 33-40.	6.8	49
67	Photocatalytic reduction of CO2 using Pt/C3N4 photocatalyts. Applied Surface Science, 2020, 503, 144426.	6.1	45
68	Deep Oxidation of Methanol Using a Novel Pt/Boron Nitride Catalyst. Industrial & Engineering Chemistry Research, 2003, 42, 3225-3229.	3.7	43
69	Sol-gel prepared InTaO ₄ and its photocatalytic characteristics. Journal of Materials Research, 2008, 23, 1364-1370.	2.6	42
70	Biodiesel Synthesis by Simultaneous Esterification and Transesterification Using Oleophilic Acid Catalyst. Industrial & Engineering Chemistry Research, 2010, 49, 2118-2121.	3.7	41
71	Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, 23-30.	5.3	39
72	High-temperature separation of binary gas mixtures using microporous ceramic membranes. Journal of Membrane Science, 1993, 77, 85-98.	8.2	38

#	Article	IF	CITATIONS
73	Photocatalytic Reduction of CO ₂ Using Ti–MCM-41 Photocatalysts in Monoethanolamine Solution for Methane Production. Industrial & Engineering Chemistry Research, 2014, 53, 11221-11227.	3.7	38
74	Global challenges in microplastics: From fundamental understanding to advanced degradations toward sustainable strategies. Chemosphere, 2021, 267, 129275.	8.2	38
75	Photocatalytic splitting of water on NiO/InTaO4 catalysts prepared by an innovative sol–gel method. Applied Catalysis A: General, 2009, 357, 73-78.	4.3	37
76	Synthesis of Titania-supported Copper Nanoparticles via Refined Alkoxide Sol-gel Process. Journal of Nanoparticle Research, 2001, 3, 113-118.	1.9	34
77	A stirring packed-bed reactor to enhance the esterification–transesterification in biodiesel production by lowering mass-transfer resistance. Chemical Engineering Journal, 2013, 234, 9-15.	12.7	34
78	An internal-illuminated monolith photoreactor towards efficient photocatalytic degradation of ppb-level isopropyl alcohol. Chemical Engineering Journal, 2016, 296, 11-18.	12.7	33
79	Photocatalytic NO reduction with C3H8 using a monolith photoreactor. Catalysis Today, 2011, 174, 141-147.	4.4	30
80	Direct gas-phase photocatalytic epoxidation of propylene with molecular oxygen by photocatalysts. Chemical Engineering Journal, 2012, 179, 285-294.	12.7	30
81	Boron nitride supported PtFe catalysts for selective hydrogenation of crotonaldehyde. Applied Catalysis A: General, 2006, 314, 233-239.	4.3	29
82	Review of Experimental Setups for Plasmonic Photocatalytic Reactions. Catalysts, 2020, 10, 46.	3.5	28
83	A novel BN supported bi-metal catalyst for selective hydrogenation of crotonaldehyde. Applied Catalysis A: General, 2005, 289, 179-185.	4.3	27
84	Magnetic Field-Enhancing Photocatalytic Reaction in Micro Optofluidic Chip Reactor. Nanoscale Research Letters, 2019, 14, 323.	5.7	27
85	Z-scheme photocatalyst Pt/GaP-TiO2-SiO2:Rh for the separated H2 evolution from photocatalytic seawater splitting. Applied Catalysis B: Environmental, 2021, 296, 120339.	20.2	27
86	Novel BN supported bi-metal catalyst for oxydehydrogenation of propane. Chemical Engineering Journal, 2008, 140, 391-397.	12.7	26
87	Photocatalytic water splitting and hydrogenation of CO2 in a novel twin photoreactor with IO3â^'/lâ^' shuttle redox mediator. Applied Catalysis A: General, 2016, 518, 158-166.	4.3	26
88	Mathematical simulation of hydrogen production via methanol steam reforming using double-jacketed membrane reactor. International Journal of Hydrogen Energy, 2007, 32, 4830-4839.	7.1	25
89	Enhanced CO2 photocatalytic reduction through simultaneously accelerated H2 evolution and CO2 hydrogenation in a twin photoreactor. Journal of CO2 Utilization, 2018, 24, 500-508.	6.8	24
90	Novel dual-layer photoelectrode prepared by RF magnetron sputtering for photocatalytic water splitting. International Journal of Hydrogen Energy, 2012, 37, 11632-11639.	7.1	23

#	Article	IF	CITATIONS
91	Synergetic photo-epoxidation of propylene over V Ti/MCM-41 mesoporous photocatalysts. Journal of Catalysis, 2015, 331, 217-227.	6.2	23
92	Sol-gel-derived photosensitive TiO ₂ and Cu/TiO ₂ using homogeneous hydrolysis technique. Journal of Materials Research, 2001, 16, 615-620.	2.6	22
93	Photocatalytic water splitting to produce hydrogen using multi-junction solar cell with different deposited thin films. Solar Energy Materials and Solar Cells, 2012, 107, 322-328.	6.2	22
94	Artificial sunlight and ultraviolet light induced photo-epoxidation of propylene over V-Ti/MCM-41 photocatalyst. Beilstein Journal of Nanotechnology, 2014, 5, 566-576.	2.8	22
95	MgxAl-LDHs layered double hydroxides catalysts for boosting catalytic synthesis of biodiesel and conversion of by-product into valuable glycerol carbonate. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 219-226.	5.3	22
96	Moderate-temperature catalytic incineration of cooking oil fumes using hydrophobic honeycomb supported Pt/CNT catalyst. Journal of Hazardous Materials, 2019, 379, 120750.	12.4	22
97	Synthesis, characterization and photo-epoxidation performance of Au-loaded photocatalysts. Journal of Chemical Sciences, 2013, 125, 859-867.	1.5	21
98	NOx abatement from stationary emission sources by photo-assisted SCR: Lab-scale to pilot-scale studies. Applied Catalysis A: General, 2016, 523, 294-303.	4.3	21
99	Photo selective catalytic reduction of nitric oxide with propane at room temperature. Catalysis Communications, 2009, 10, 1534-1537.	3.3	20
100	Platinum nanoparticles embedded in pyrolyzed nitrogen-containing cobalt complexes for high methanol-tolerant oxygen reduction activity. Journal of Materials Chemistry, 2010, 20, 7551.	6.7	20
101	Oxygen reducing activity of methanol-tolerant catalysts by high-temperature pyrolysis. Diamond and Related Materials, 2011, 20, 322-329.	3.9	19
102	Reactor Design for CO2 Photo-Hydrogenation toward Solar Fuels under Ambient Temperature and Pressure. Catalysts, 2017, 7, 63.	3.5	19
103	Temperature effect on the photo-epoxidation of propylene over V–Ti/MCM-41 photocatalyst. Catalysis Communications, 2013, 33, 57-60.	3.3	18
104	Boron nitride supported Pt catalyst for selective hydrogenation. Catalysis Letters, 2005, 102, 223-227.	2.6	17
105	Photocatalytic reduction of CO ₂ using molybdenum-doped titanate nanotubes in a MEA solution. RSC Advances, 2015, 5, 63142-63151.	3.6	17
106	In-situ FTIR spectroscopic study of the mechanism of photocatalytic reduction of NO with methane over Pt/TiO2 photocatalysts. Research on Chemical Intermediates, 2015, 41, 2153-2164.	2.7	17
107	Photocatalytic reduction of NO pollutant using an opticalâ€fibre photoreactor at room temperature. Environmental Technology (United Kingdom), 2010, 31, 1449-1458.	2.2	15
108	Photo-Fenton enhanced twin-reactor for simultaneously hydrogen separation and organic wastewater degradation. Applied Catalysis B: Environmental, 2021, 281, 119517.	20.2	14

#	Article	IF	CITATIONS
109	Preparation, characterization and photocatalytic performance of TiO2 prepared by using pressurized fluids in CO2 reduction and N2O decomposition. Journal of Sol-Gel Science and Technology, 2015, 76, 621-629.	2.4	13
110	Synthesis of TiO 2 on different substrates by chemical vapor deposition for photocatalytic reduction of Cr(VI) in water. Journal of the Chinese Chemical Society, 2019, 66, 1713-1720.	1.4	13
111	Exploration of photocatalytic seawater splitting on Pt/GaP-C3N4 under simulated sunlight. Applied Surface Science, 2022, 572, 151346.	6.1	13
112	Real-Time Raman Monitoring during Photocatalytic Epoxidation of Cyclohexene over V-Ti/MCM-41 Catalysts. Catalysts, 2015, 5, 518-533.	3.5	12
113	Advances in bioconversion of microalgae with high biomass and lipid productivity. Journal of the Taiwan Institute of Chemical Engineers, 2017, 79, 37-42.	5.3	12
114	A novel reaction mode using H2 produced from solid-liquid reaction to promote CO2 reduction through solid-gas reaction. Catalysis Communications, 2017, 89, 4-8.	3.3	12
115	Enhancement of biodiesel production via sequential esterification/transesterification over solid superacidic and superbasic catalysts. Catalysis Today, 2020, 348, 257-269.	4.4	12
116	Photocatalytic Degradation of Phenol and Methyl Orange with Titania-Based Photocatalysts Synthesized by Various Methods in Comparison with ZnO–Graphene Oxide Composite. Topics in Catalysis, 2020, 63, 1215-1226.	2.8	12
117	Removal of tar base from coal tar aromatics employing solid acid adsorbents. Separation and Purification Technology, 2000, 21, 145-153.	7.9	10
118	Water and temperature effects on photo-selective catalytic reduction of nitric oxide on Pd-loaded TiO2photocatalyst. Environmental Technology (United Kingdom), 2012, 33, 2133-2141.	2.2	10
119	Influence of co-feeds additive on the photo-epoxidation of propylene over V–Ti/MCM-41 photocatalyst. Catalysis Today, 2015, 245, 186-191.	4.4	10
120	Ethanol conversion to selective high-value hydrocarbons over Ni/HZSM-5 zeolite catalyst. Catalysis Communications, 2020, 144, 106067.	3.3	9
121	Solar hydrogen production from seawater splitting using mixed-valence titanium phosphite photocatalyst. Journal of Environmental Chemical Engineering, 2021, 9, 104826.	6.7	9
122	A transient study of double-jacketed membrane reactor via methanol steam reforming. International Journal of Hydrogen Energy, 2008, 33, 7435-7443.	7.1	8
123	Competitive reaction pathway for photo and thermal catalytic removal of NO with hydrocarbon in flue gas under elevated temperatures. Catalysis Communications, 2016, 84, 40-43.	3.3	8
124	Photocatalytic water splitting using hygroscopic MgO modified TiO2/WO3 dual-layer photocatalysts. Korean Journal of Chemical Engineering, 2020, 37, 1352-1359.	2.7	8
125	High Effective Composite RGO/TiO2 Photocatalysts to Degrade Isopropanol Pollutant in Semiconductor Industry. Topics in Catalysis, 2020, 63, 1240-1250.	2.8	8
126	Visualizing reaction pathway for the photo-transformation of NO2 and N2 into NO over WO3 photocatalyst. Research on Chemical Intermediates, 2017, 43, 7159-7169.	2.7	7

#	Article	IF	CITATIONS
127	Feasibility of Manufacturing Hydrogen and Styrene through the Use of Porous Ceramic Membranes. Industrial & Engineering Chemistry Research, 1999, 38, 4491-4495.	3.7	6
128	Catalysis for new energy resources and environmental protection. Catalysis Today, 2004, 97, 93.	4.4	6
129	Recent advances in the development of photocatalytic NOx abatement. , 2020, , 211-229.		5
130	The Effect of Dealumination on Zeolite-Supported Ru Catalysts. Journal of Catalysis, 1993, 142, 531-539.	6.2	4
131	Preparation and characterization of mesoporous polymer-based solid acid catalysts for biodiesel production via transesterification of palmitic oils. Catalysis Today, 2021, , .	4.4	4
132	Renewable Energy from the Photocatalytic Reduction of CO2 with H2O. Nanostructure Science and Technology, 2010, , 673-696.	0.1	2
133	An Alternative Route for the Preparation of Sulfated Zirconia Loaded on Alumina (SZA) for Biodiesel Production: An Optimization Study. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2013, 35, 1296-1305.	2.3	2
134	Visibleâ€lightâ€active photocatalytic thin film by RF sputtering for hydrogen generation. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 283-291.	1.5	2
135	Plasmonic nanostructures for photo-catalytic reactors. Proceedings of SPIE, 2009, , .	0.8	1
136	Editorial: Biofuels. Energy Conversion and Management, 2014, 88, 1077.	9.2	1
137	Photo-catalytic chemical reactor with plasmonic nanostructure. , 2009, , .		0
138	Visible-Light Photocatalyst to Remove Indoor Ozone under Ambient Condition. Catalysts, 2021, 11, 383.	3.5	0
139	Enhanced methanol production by two-stage reaction of CO2 hydrogenation at atmospheric pressure. Catalysis Communications, 2022, 162, 106373.	3.3	0