
Saskia Goes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3463803/publications.pdf Version: 2024-02-01

SASKIA COFS

#	Article	IF	CITATIONS
1	Imaging slab-transported fluids and their deep dehydration from seismic velocity tomography in the Lesser Antilles subduction zone. Earth and Planetary Science Letters, 2022, 586, 117535.	4.4	8
2	How Aseismic Ridges Modify the Dynamics of Free Subduction: A 3-D Numerical Investigation. Frontiers in Earth Science, 2022, 10, .	1.8	4
3	Effects of basal drag on subduction dynamics from 2D numerical models. Solid Earth, 2021, 12, 79-93.	2.8	8
4	Widespread Hydration of the Back Arc and the Link to Variable Hydration of the Incoming Plate in the Lesser Antilles From Rayleigh Wave Imaging. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009707.	2.5	5
5	Subduction history of the Caribbean from upper-mantle seismic imaging and plate reconstruction. Nature Communications, 2021, 12, 4211.	12.8	21
6	Variation in Upper Plate Crustal and Lithospheric Mantle Structure in the Greater and Lesser Antilles From Ambient Noise Tomography. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009800.	2.5	7
7	Multivariate Statistical Appraisal of Regional Susceptibility to Induced Seismicity: Application to the Permian Basin, SW United States. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022768.	3.4	7
8	Illuminating a Contorted Slab With a Complex Intraslab Rupture Evolution During the 2021 Mw 7.3 East Cape, New Zealand Earthquake. Geophysical Research Letters, 2021, 48, .	4.0	11
9	Alongâ€Arc Heterogeneity in Local Seismicity across the Lesser Antilles Subduction Zone from a Dense Oceanâ€Bottom Seismometer Network. Seismological Research Letters, 2020, 91, 237-247.	1.9	26
10	Thermo-compositional structure of the north-eastern Canadian Shield from Rayleigh wave dispersion analysis as a record of its tectonic history. Earth and Planetary Science Letters, 2020, 547, 116465.	4.4	7
11	Lateral Variations in Thermochemical Structure of the Eastern Canadian Shield. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018734.	3.4	6
12	Continental lithospheric temperatures: A review. Physics of the Earth and Planetary Interiors, 2020, 306, 106509.	1.9	41
13	Variable water input controls evolution of the Lesser Antilles volcanic arc. Nature, 2020, 582, 525-529.	27.8	81
14	Seismic Tomographic Imaging of the Eastern Mediterranean Mantle: Implications for Terminal‣tage Subduction, the Uplift of Anatolia, and the Development of the North Anatolian Fault. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009009.	2.5	23
15	Wideâ€Angle Seismic Imaging of Two Modes of Crustal Accretion in Mature Atlantic Ocean Crust. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019100.	3.4	20
16	Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces. Nature Communications, 2020, 11, 1874.	12.8	66
17	The role of arc migration in the development of the Lesser Antilles: A new tectonic model for the Cenozoic evolution of the eastern Caribbean. Geology, 2019, 47, 891-895.	4.4	53
18	Thermal nature and resolution of the lithosphere–asthenosphere boundary under the Pacific from surface waves. Geophysical Journal International, 2019, 216, 1441-1465.	2.4	11

#	Article	IF	CITATIONS
19	Earthquakes track subduction fluids from slab source to mantle wedge sink. Science Advances, 2019, 5, eaav7369.	10.3	54
20	The Seismic Signature of Upperâ€Mantle Plumes: Application to the Northern East African Rift. Geochemistry, Geophysics, Geosystems, 2019, 20, 6106-6122.	2.5	9
21	Project VoiLA: Volatile Recycling in the Lesser Antilles. Eos, 2019, 100, .	0.1	11
22	Seismic evidence for depth-dependent metasomatism in cratons. Earth and Planetary Science Letters, 2018, 491, 148-159.	4.4	42
23	Evaluating the Resolution of Deep Mantle Plumes in Teleseismic Traveltime Tomography. Journal of Geophysical Research: Solid Earth, 2018, 123, 384-400.	3.4	23
24	Continental margin subsidence from shallow mantle convection: Example from West Africa. Earth and Planetary Science Letters, 2018, 481, 350-361.	4.4	13
25	Mantle wedge temperatures and their potential relation to volcanic arc location. Earth and Planetary Science Letters, 2018, 501, 67-77.	4.4	52
26	Strong plates enhance mantle mixing in early Earth. Nature Communications, 2018, 9, 2708.	12.8	21
27	Compositional heterogeneity near the base of the mantle transition zone beneath Hawaii. Nature Communications, 2018, 9, 1266.	12.8	15
28	Evidence of Subductionâ€Related Thermal and Compositional Heterogeneity Below the United States From Transition Zone Receiver Functions. Geophysical Research Letters, 2018, 45, 8913-8922.	4.0	18
29	Subducting-slab transition-zone interaction: Stagnation, penetration and mode switches. Earth and Planetary Science Letters, 2017, 464, 10-23.	4.4	83
30	Signals of 660Âkm topography and harzburgite enrichment in seismic images of wholeâ€mantle upwellings. Geophysical Research Letters, 2017, 44, 3600-3607.	4.0	13
31	Subduction-transition zone interaction: A review. , 2017, 13, 644-664.		167
32	Smallâ€ s cale thermal upwellings under the northern East African Rift from <i>S</i> travel time tomography. Journal of Geophysical Research: Solid Earth, 2016, 121, 7395-7408.	3.4	22
33	Reconciling mantle wedge thermal structure with arc lava thermobarometric determinations in oceanic subduction zones. Geochemistry, Geophysics, Geosystems, 2016, 17, 4105-4127.	2.5	31
34	<i>P</i> - and <i>S</i> -wave delays caused by thermal plumes. Geophysical Journal International, 2016, 206, 1169-1178.	2.4	27
35	The mantle wedge's transient 3â€Ð flow regime and thermal structure. Geochemistry, Geophysics, Geosystems, 2016, 17, 78-100.	2.5	28
36	Multiple mantle upwellings in the transition zone beneath the northern <scp>E</scp> astâ€ <scp>A</scp> frican <scp>R</scp> ift system from relative Pâ€wave travelâ€time tomography. Geochemistry, Geophysics, Geosystems, 2015, 16, 2949-2968.	2,5	52

#	Article	IF	CITATIONS
37	Thermally Dominated Deep Mantle LLSVPs: A Review. , 2015, , 441-477.		66
38	Upper mantle temperature and the onset of extension and break-up in Afar, Africa. Earth and Planetary Science Letters, 2015, 418, 78-90.	4.4	52
39	On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large igneous provinces and deep mantle seismic structure. Earth and Planetary Science Letters, 2015, 411, 121-130.	4.4	71
40	The effect of metastable pyroxene on the slab dynamics. Geophysical Research Letters, 2014, 41, 8800-8808.	4.0	44
41	Shear-velocity structure of the Tyrrhenian Sea: Tectonics, volcanism and mantle (de)hydration of a back-arc basin. Earth and Planetary Science Letters, 2014, 400, 45-53.	4.4	17
42	A systematic 2â€D investigation into the mantle wedge's transient flow regime and thermal structure: Complexities arising from a hydrated rheology and thermal buoyancy. Geochemistry, Geophysics, Geosystems, 2014, 15, 28-51.	2.5	30
43	Interaction of subducted slabs with the mantle transitionâ€zone: A regime diagram from 2â€D thermoâ€mechanical models with a mobile trench and an overriding plate. Geochemistry, Geophysics, Geosystems, 2014, 15, 1739-1765.	2.5	146
44	The role of elasticity in slab bending. Geochemistry, Geophysics, Geosystems, 2014, 15, 4507-4525.	2.5	18
45	Western North America's jigsaw. Nature, 2013, 496, 35-37.	27.8	2
46	Lithospheric cooling trends and deviations in oceanic <i>PPâ€P</i> and <i>SSâ€S</i> differential traveltimes. Journal of Geophysical Research: Solid Earth, 2013, 118, 996-1007.	3.4	15
47	Low seismic velocities below midâ€ocean ridges: Attenuation versus melt retention. Journal of Geophysical Research, 2012, 117, .	3.3	52
48	Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity. Earth and Planetary Science Letters, 2012, 353-354, 253-269.	4.4	190
49	Global variation of body-wave attenuation in the upper mantle from teleseismic P wave and S wave spectra. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	21
50	Synthetic images of dynamically predicted plumes and comparison with a global tomographic model. Earth and Planetary Science Letters, 2011, 311, 351-363.	4.4	28
51	Signatures of downgoing plate-buoyancy driven subduction in Cenozoic plate motions. Physics of the Earth and Planetary Interiors, 2011, 184, 1-13.	1.9	42
52	Computational methods for geodynamics. Geophysical Journal International, 2011, 184, 974-974.	2.4	0
53	Mapping spherical seismic into physical structure: biases from 3-D phase-transition and thermal boundary-layer heterogeneity. Geophysical Journal International, 2011, 184, 1371-1378.	2.4	29
54	Wavefront healing renders deep plumes seismically invisible. Geophysical Journal International, 2011, 187, 273-277.	2.4	36

#	Article	IF	CITATIONS
55	Complex cratonic seismic structure from thermal models of the lithosphere: effects of variations in deep radiogenic heating. Geophysical Journal International, 2010, 180, 999-1012.	2.4	40
56	India–Asia convergence driven by the subduction of the Greater Indian continent. Nature Geoscience, 2010, 3, 136-139.	12.9	183
57	Small-scale convection at the edge of the Colorado Plateau: Implications for topography, magmatism, and evolution of Proterozoic lithosphere. Geology, 2010, 38, 611-614.	4.4	149
58	Dynamics of plate bending at the trench and slabâ€plate coupling. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	106
59	Thermochemical interpretation of 1â€Ð seismic data for the lower mantle: The significance of nonadiabatic thermal gradients and compositional heterogeneity. Journal of Geophysical Research, 2009, 114, .	3.3	57
60	Spatial variations of P wave attenuation in the mantle beneath North America. Journal of Geophysical Research, 2009, 114, .	3.3	19
61	Evidence of lower-mantle slab penetration phases in plate motions. Nature, 2008, 451, 981-984.	27.8	129
62	Thermochemical interpretation of one-dimensional seismic reference models for the upper mantle: evidence for bias due to heterogeneity. Geophysical Journal International, 2008, 175, 627-648.	2.4	66
63	A dynamical model for generating Eurasian lithospheric stress and strain rate fields: Effect of rheology and cratons. Journal of Geophysical Research, 2008, 113, .	3.3	9
64	Small-scale convection during continental rifting: Evidence from the Rio Grande rift. Geology, 2008, 36, 575.	4.4	67
65	Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation. Earth and Planetary Science Letters, 2007, 262, 284-297.	4.4	148
66	Seismic potential of Southern Italy. Tectonophysics, 2006, 415, 81-101.	2.2	67
67	Mesozoic spreading kinematics: consequences for Cenozoic Central and Western Mediterranean subduction. Geophysical Journal International, 2006, 165, 804-816.	2.4	54
68	Is a pyrolitic adiabatic mantle compatible with seismic data?. Earth and Planetary Science Letters, 2005, 232, 227-243.	4.4	54
69	Seismic constraints on temperature of the Australian uppermost mantle. Earth and Planetary Science Letters, 2005, 236, 227-237.	4.4	55
70	One-dimensional physical reference models for the upper mantle and transition zone: Combining seismic and mineral physics constraints. Journal of Geophysical Research, 2005, 110, .	3.3	53
71	Earthquake recurrence parameters from seismic and geodetic strain rates in the eastern Mediterranean. Geophysical Journal International, 2004, 157, 1331-1347.	2.4	61
72	A recent tectonic reorganization in the south-central Mediterranean. Earth and Planetary Science Letters, 2004, 226, 335-345.	4.4	219

#	Article	IF	CITATIONS
73	Synthetic seismic signature of thermal mantle plumes. Earth and Planetary Science Letters, 2004, 218, 403-419.	4.4	57
74	New GPS constraints on the Africa-Eurasia plate boundary zone in southern Italy. Geophysical Research Letters, 2003, 30, .	4.0	142
75	Inferring upper-mantle temperatures from seismic velocities. Physics of the Earth and Planetary Interiors, 2003, 138, 197-222.	1.9	477
76	Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth and Planetary Science Letters, 2002, 204, 17-32.	4.4	54
77	Thermal structure of the North American uppermost mantle inferred from seismic tomography. Journal of Geophysical Research, 2002, 107, ETG 2-1.	3.3	243
78	The effect of plate stresses and shallow mantle temperatures on tectonics of northwestern Europe. Global and Planetary Change, 2000, 27, 23-38.	3.5	41
79	Thermal structure of continental upper mantle inferred from S-wave velocity and surface heat flow. Earth and Planetary Science Letters, 2000, 181, 395-407.	4.4	73
80	Shallow mantle temperatures under Europe fromPandSwave tomography. Journal of Geophysical Research, 2000, 105, 11153-11169.	3.3	485
81	Active deformation in eastern Indonesia and the Philippines from GPS and seismicity data. Journal of Geophysical Research, 2000, 105, 663-680.	3.3	117
82	Imaging mantle upwellings with seismic waves. Science Progress, 2000, 83 (Pt 3), 261-75.	1.9	0
83	A Lower Mantle Source for Central European Volcanism. Science, 1999, 286, 1928-1931.	12.6	210
84	The Complex Rupture Process of the 1996 Deep Flores, Indonesia Earthquake (Mw7.9) from teleseismic P-waves. Geophysical Research Letters, 1997, 24, 1295-1298.	4.0	14
85	Three-dimensional thermal modeling for the Mendocino Triple Junction area. Earth and Planetary Science Letters, 1997, 148, 45-57.	4.4	23
86	Near-field deformation seen on distant broadband seismograms. Geophysical Research Letters, 1995, 22, 1-4.	4.0	29
87	A broadband P wave analysis of the large deep Fiji Island and Bolivia Earthquakes of 1994. Geophysical Research Letters, 1995, 22, 2249-2252.	4.0	24
88	How regularly do earthquakes recur? A synthetic seismicity model for the San Andreas Fault. Geophysical Research Letters, 1993, 20, 2131-2134.	4.0	43
89	Structure and seismicity of the Aegean subduction zone. Terra Nova, 1990, 2, 554-562.	2.1	39