
Maxim Shvarts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3463580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Au- and Ag-Containing Contacts to GaSb-Photovoltaic Converters. IEEE Electron Device Letters, 2022, 43, 418-421.	2.2	2
2	Using electroluminescence of subcells for obtaining fundamental resistive-less dark IV characteristic of multi-junction solar cells. Solar Energy Materials and Solar Cells, 2022, 245, 111863.	3.0	0
3	Temperature dependencies of the refractive index for Al-Ga-In-As metamorphic layers. Optics Letters, 2021, 46, 4928.	1.7	0
4	Increasing the Efficiency of 520- to 540-nm Laser Radiation Photovoltaic Converters Based on GaInP/GaAs Heterostructures. Technical Physics Letters, 2021, 47, 290-292.	0.2	0
5	GaSb-Based Thermophotovoltaic Converters of IR Selective Emitter Radiation. Semiconductors, 2021, 55, 840-843.	0.2	4
6	Influence of QD array positioning in GaAs solar cell p-n junction on their photoelectric characteristics. Journal of Physics: Conference Series, 2021, 2103, 012192.	0.3	0
7	Electronic states in GaAs photoconverters with InGaAs quantum well-dots. Applied Physics Express, 2020, 13, 015009.	1.1	3
8	Optimization of photoelectric parameters of InGaAs metamorphic laser (λ=1064Ânm) power converters with over 50% efficiency. Solar Energy Materials and Solar Cells, 2020, 217, 110710.	3.0	30
9	Temperature Tweaking of the Output Photovoltaic Parameters of Laser Power Converters. IEEE Electron Device Letters, 2020, 41, 1324-1327.	2.2	10
10	Comparative Analysis of the Optical and Physical Properties of InAs and In0.8Ga0.2As Quantum Dots and Solar Cells Based on them. Semiconductors, 2020, 54, 1267-1275.	0.2	2
11	Monitoring complex for concentrator photovoltaic installation with a tracking system. IOP Conference Series: Earth and Environmental Science, 2020, 578, 012054.	0.2	1
12	The Influence of the Number of Rows of GaInAs Quantum Objects on the Saturation Current of GaAs Photoconverters. Technical Physics Letters, 2020, 46, 599-602.	0.2	1
13	Laser Power Converter Modules with a Wavelength of 809–850 nm. Technical Physics, 2020, 65, 1690-1694.	0.2	0
14	Effects of Doping of Bragg Reflector Layers on the Electrical Characteristics of InGaAs/GaAs Metamorphic Photovoltaic Converters. Semiconductors, 2020, 54, 476-483.	0.2	2
15	Improving the voltage of GaAs solar cells with In0.4Ga0.6As nanostructures. Applied Physics Express, 2020, 13, 075002.	1.1	1
16	Experimental and Theoretical Examination of the Photosensitivity Spectra of Structures with In0.4Ga0.6As Quantum Well-Dots of the Optical Range (900–1050 nm). Technical Physics Letters, 2020, 46, 203-206.	0.2	4
17	Estimation of the potential for increasing the efficiency of GaInP/GaAs/Ge multi-junction solar cells by using quantum-size objects. Applied Physics Express, 2020, 13, 065004.	1.1	0
18	Effect of Temperature on the Characteristics of 4H-SiC UV Photodetectors. Semiconductors, 2020, 54, 246-252.	0.2	3

#	Article	IF	CITATIONS
19	InGaAs metamorphic laser power converters with distributed Bragg reflector for wavelength range λ=1 – 1.1â€Âµm. AIP Conference Proceedings, 2020, , .	0.3	4
20	Ill–V Solar Cells and Concentrator Arrays. Springer Series in Optical Sciences, 2020, , 133-174.	0.5	5
21	Photovoltaic converters with quantum objects under laser flux of subband photons. Journal of Physics: Conference Series, 2020, 1697, 012189.	0.3	0
22	The study of voltage loss reasons in GaAs solar cells with embedded InGaAs quantum dots. Journal of Physics: Conference Series, 2020, 1695, 012078.	0.3	0
23	The GaAs laser photoconverter (λ 809 nm) current flow mechanisms at the temperature range of 100-420 K. Journal of Physics: Conference Series, 2020, 1697, 012170.	0.3	1
24	Tuning of laser power converters efficiency by means of temperature. Journal of Physics: Conference Series, 2020, 1697, 012191.	0.3	1
25	lsotype barriers in the connecting part of multi-junction solar cells. Journal of Physics: Conference Series, 2020, 1695, 012091.	0.3	0
26	The dependence of recombination in GaAs solar cells on the number of included GaInAs quantum objects. Journal of Physics: Conference Series, 2020, 1695, 012092.	0.3	0
27	Tweaking of refractive surfaces to improve the irradiance uniformity in Fresnel lenses: Possibilities and limitations. AIP Conference Proceedings, 2020, , .	0.3	Ο
28	Switching of current modes in a concentrator multi-junction solar cell due to the Fresnel lens chromatic aberration. AIP Conference Proceedings, 2020, , .	0.3	0
29	Correlation between the open circuit voltage and the electroluminescence spectrum of solar cells with quantum objects. AIP Conference Proceedings, 2020, , .	0.3	Ο
30	Time delay at photovoltaic parameters determination for high power laser converters. AIP Conference Proceedings, 2020, , .	0.3	0
31	Module of Laser-Radiation (λ = 1064 nm) Photovoltaic Converters. Semiconductors, 2019, 53, 1110-1113.	0.2	5
32	Bragg reflectors as a light trap in multijunction solar cells. Journal of Physics: Conference Series, 2019, 1199, 012033.	0.3	0
33	Minority charge carrier lifetime estimation for multijunction structures of PV converters. AIP Conference Proceedings, 2019, , .	0.3	0
34	GaSb photovoltaic cells for laser power conversion. AIP Conference Proceedings, 2019, , .	0.3	10
35	Thermal and resistive losses in InGaAs metamorphic laser (λ = 1064â€nm) power converters with over 50% efficiency. , 2019, , .		8
36	Concentrator bifacial crystalline silicon solar cells with Al-alloyed BSF and Ag-free multi-wire metallization. AIP Conference Proceedings, 2019, , .	0.3	1

#	Article	IF	CITATIONS
37	Compromise solutions for design and technology of Fresnel lenses as sunlight concentrators. AIP Conference Proceedings, 2019, , .	0.3	5
38	GaAs subcell of triple-junction solar cells with hybrid quantum objects: Temperature photovoltaic characteristics. AIP Conference Proceedings, 2019, , .	0.3	0
39	High-Efficiency Conversion of High-Power-Density Laser Radiation. Technical Physics Letters, 2019, 45, 24-26.	0.2	14
40	Temperature drift of PV parameters in high-power laser converters. AIP Conference Proceedings, 2019,	0.3	2
41	Characteristics of a Silicon Avalanche Photodiode for the Near-IR Spectral Range. Technical Physics Letters, 2019, 45, 780-782.	0.2	2
42	Light budget in MJ SC at temperature tuning. AIP Conference Proceedings, 2019, , .	0.3	0
43	Dethermalization of carriers in GaAs solar cells with quantum objects. Applied Physics Express, 2019, 12, 035005.	1.1	7
44	Anomalies in Photovoltaic Characteristics of Multijunction Solar Cells at Ultrahigh Solar Light Concentrations. Technical Physics Letters, 2019, 45, 1100-1102.	0.2	3
45	Optical materials for lens concentrators of solar radiation. Journal of Physics: Conference Series, 2019, 1400, 066052.	0.3	1
46	Spectral dependencies of multijunction solar cells in a wide range of temperatures. Journal of Physics: Conference Series, 2019, 1400, 066057.	0.3	0
47	Performance of InGaAs metamorphic laser power converters at different conditions. Journal of Physics: Conference Series, 2019, 1410, 012094.	0.3	1
48	Spectral analysis of the electroluminescence and photoresponse of heterostructures with InGaAs quantum objects. Journal of Physics: Conference Series, 2019, 1410, 012099.	0.3	1
49	Direct GalnP-to-Ge optical interaction in the triple-junction solar cells with thinned intermediate GaAs subcell. Journal of Physics: Conference Series, 2019, 1410, 012114.	0.3	0
50	Counteracting the Photovoltaic Effect in the Top Intergenerator Part of GaInP/GaAs/Ge Solar Cells. Semiconductors, 2019, 53, 1535-1539.	0.2	2
51	On modelling optical parameters of InAs quantum dots for cascade GaInP / GaAs / Ge solar cells. Journal of Physics: Conference Series, 2019, 1400, 066058.	0.3	0
52	Capacitive Characteristics of High-Speed Photovoltaic Converters at Combined Lighting. Semiconductors, 2019, 53, 1959-1963.	0.2	1
53	Ga(In)AsP Lateral Nanostructures as the Optical Component of GaAs-Based Photovoltaic Converters. Semiconductors, 2019, 53, 1705-1708.	0.2	2
54	Analysis of spectral irradiance blurring by Fresnel lens sunlight concentrators. Journal of Physics: Conference Series, 2019, 1400, 066059.	0.3	0

#	Article	IF	CITATIONS
55	Increasing the Photocurrent of a Ga(In)As Subcell in Multijunction Solar Cells Based on GaInP/Ga(In)As/Ge Heterostructure. Technical Physics Letters, 2019, 45, 1258-1261.	0.2	1
56	Quantum Yield of a Silicon XUV Avalanche Photodiode in the 320–1100 nm Wavelength Range. Technical Physics Letters, 2019, 45, 1226-1229.	0.2	2
57	Extraction of p-n junction properties and series resistance in GaAs nanowire-based solar cells using light concentration. Nanotechnology, 2019, 30, 094001.	1.3	4
58	Modification of Photovoltaic Laser-Power (λ = 808 nm) Converters Grown by LPE. Semiconductors, 2018, 52, 366-370.	0.2	16
59	Heterointerfaces in the bottom tunnel part of GaInP/GaAs/Ge solar cells. Journal of Physics: Conference Series, 2018, 1124, 041028.	0.3	0
60	Optical coupling upset in multijunction solar cells with built-in Bragg reflectors. Journal of Physics: Conference Series, 2018, 1124, 041033.	0.3	0
61	Optical and electrical properties of superlattice and photonic metamorphic structures for high-performance solar cells. AIP Conference Proceedings, 2018, , .	0.3	2
62	Series spreading resistance in single- and multi-junction concentrator solar cells. Journal of Physics: Conference Series, 2018, 1038, 012105.	0.3	1
63	Heating of photovoltaic converter by laser beam: overheating temperature. Journal of Physics: Conference Series, 2018, 1135, 012070.	0.3	4
64	Photovoltaic module with sunlight concentrators: numerical simulation of steady state thermal regime. Journal of Physics: Conference Series, 2018, 1135, 012100.	0.3	0
65	Sunlight simulation in investigating characteristics of small-size sunlight concentrators and multijunction solar cells. Journal of Physics: Conference Series, 2018, 1124, 041038.	0.3	0
66	The external quantum efficiency of multijunction solar cells with built-in 1D photonic crystals. Journal of Physics: Conference Series, 2018, 1135, 012075.	0.3	1
67	AlGaAs/GaAs Photovoltaic Converters of Tritium Radioluminescent-Lamp Radiation. Semiconductors, 2018, 52, 1754-1757.	0.2	8
68	Optical properties of In0.8Ga0.2As quantum dots in GaAs photovoltaic convertors. Journal of Physics: Conference Series, 2018, 1124, 041003.	0.3	0
69	Multijunction photovoltaic converters for information and power transmission systems. Journal of Physics: Conference Series, 2018, 1135, 012074.	0.3	1
70	Electro-optical properties of InAs and In _{0.8} Ga _{0.2} As quantum dots in GaAs solar cells. Journal of Physics: Conference Series, 2018, 1135, 012078.	0.3	1
71	The Effect of Base Thickness on Photoconversion Efficiency in Textured Silicon-Based Solar Cells. Technical Physics Letters, 2018, 44, 873-876.	0.2	24
72	InAs quantum dots for cascade GaInP / GaAs / Ge solar cells. Journal of Physics: Conference Series, 2018, 1135, 012077.	0.3	0

#	Article	IF	CITATIONS
73	Optical Properties of InGaAs/InAlAs Metamorphic Nanoheterostructures for Photovoltaic Converters of Laser and Solar Radiation. Technical Physics Letters, 2018, 44, 877-880.	0.2	2
74	The investigation of InGaAs quantum dot growth peculiarities for GaAs intermediate band solar cells. Journal of Physics: Conference Series, 2018, 1038, 012110.	0.3	3
75	Photoconverter heating by incident radiation: Overheat temperature and IV-curve correction. AIP Conference Proceedings, 2018, , .	0.3	4
76	Output parameters of photovoltaic cells at ultrahigh radiant fluxes. AIP Conference Proceedings, 2018, , .	0.3	6
77	InGaAs/GaAs receiver for infrared (λ=1064â€nm) laser power conversion. AIP Conference Proceedings, 2018, , .	0.3	2
78	Output energy predictions for hybrid concentrator III-V / planar thin-film modules. AIP Conference Proceedings, 2018, , .	0.3	2
79	Multijunction solar cells with pronounced optical coupling: Single wavelength laser biasing approach at quantum efficiency measurements. AIP Conference Proceedings, 2018, , .	0.3	1
80	Experimental equipment for optical characterization of Fresnel lens concentrators. AIP Conference Proceedings, 2018, , .	0.3	1
81	Current localization in heterostructures of multijunction solar cells: Causes for arising and diagnostics potential. AIP Conference Proceedings, 2018, , .	0.3	1
82	InGaAs metamorphic laser (λ=1064â€nm) power converters with over 44% efficiency. , 2018, , .		14
83	Photon-coupled characteristic of a multijunction solar cell. Journal of Physics: Conference Series, 2018, 1038, 012112.	0.3	Ο
84	Recombination in GaAs p–i–n Structures with InGaAs Quantum-Confined Objects: Modeling and Regularities. Semiconductors, 2018, 52, 1244-1248.	0.2	6
85	Multilayer Quantum Well–Dot InGaAs Heterostructures in GaAs-based Photovoltaic Converters. Semiconductors, 2018, 52, 1249-1254.	0.2	2
86	Influence of the Ohmic Contact Structure on the Performance of GaAs/AlGaAs Photovoltaic Converters. Technical Physics, 2018, 63, 1177-1181.	0.2	5
87	State-of-the-art Architectures and Technologies of High-Efficiency Solar Cells Based on III–V Heterostructures for Space and Terrestrial Applications. Optoelectronics, Instrumentation and Data Processing, 2018, 54, 187-202.	0.2	30
88	Bragg reflectors for measuring optical parameters of layers of metamorphic InAlGaAs/GaAs heterostructures. Optics Express, 2018, 26, A832.	1.7	2
89	In0.8Ga0.2As Quantum Dots for GaAs Solar Cells: Metal-Organic Vapor-Phase Epitaxy Growth Peculiarities and Properties. Semiconductors, 2018, 52, 870-876.	0.2	2
90	Influence of double- and triple-layer antireflection coatings on the formation of photocurrents in multijunction III–V solar cells. Semiconductors, 2017, 51, 88-92.	0.2	4

#	Article	IF	CITATIONS
91	InGaAs metamorphic laser (1064Ânm) power converters with over 40% efficiency. Electronics Letters, 2017, 53, 173-175.	0.5	18
92	Optimization of structural and growth parameters of metamorphic InGaAs photovoltaic converters grown by MOCVD. Semiconductors, 2017, 51, 93-99.	0.2	15
93	Specific features of current flow in α-Si : H/Si heterojunction solar cells. Technical Physics Letters, 2017, 43, 152-155.	0.2	25
94	Photovoltaic optical sensors for high-power conversion and information transmission. Proceedings of SPIE, 2017, , .	0.8	0
95	Concentrator bifacial crystalline silicon solar cells with multi-wire metallization attached to TCO layers using transparent conductive polymers. AlP Conference Proceedings, 2017, , .	0.3	0
96	Optical leakage versus luminescent coupling in a multijunction solar cell: how to recognize a source of additional photocurrent in subcells. Journal of Physics: Conference Series, 2017, 816, 012040.	0.3	3
97	Spectrum tuning in multi-junction solar cells measurements. Journal of Physics: Conference Series, 2017, 929, 012084.	0.3	0
98	About significance of absolute photocurrent values determination during the solar cell external quantum efficiency measurements. Journal of Physics: Conference Series, 2017, 917, 052026.	0.3	1
99	Manifestation of counteracting photovoltaic effect on IV characteristics in multi-junction solar cells. Journal of Physics: Conference Series, 2017, 917, 052034.	0.3	0
100	Current mismatch violation in concentrator multijunction solar cells. AIP Conference Proceedings, 2017, , .	0.3	5
101	Simulation of the photo-luminescent coupling transfer function in multijunction nanoheterostructure solar cells. AIP Conference Proceedings, 2016, , .	0.3	2
102	Current relaxation in MJ SCs and its influence on IV curve formation in presence of light coupling. Journal of Physics: Conference Series, 2016, 741, 012091.	0.3	0
103	Analysis of a multi-junction solar cell with shunted subcells using SPICE. Journal of Physics: Conference Series, 2016, 690, 012040.	0.3	2
104	Increasing the quantum efficiency of InAs/GaAs QD arrays for solar cells grown by MOVPE without using strainâ€balance technology. Progress in Photovoltaics: Research and Applications, 2016, 24, 1261-1271.	4.4	36
105	Overcoming the luminescent coupling effect in experimental search for the actual quantum efficiency values in multi-junction solar cells. AIP Conference Proceedings, 2016, , .	0.3	8
106	Adjustment and Calibration Technique for a Solar Simulator Based on Measuring the Parameters of Multipass Thin-Film Photoelectric Modules. Measurement Techniques, 2016, 59, 46-51.	0.2	1
107	Increasing the quantum efficiency of GaAs solar cells by embedding InAs quantum dots. Journal of Physics: Conference Series, 2016, 769, 012036.	0.3	0
108	Temperature dependence of photoconversion efficiency in silicon heterojunction solar cells: Theory vs experiment. Journal of Applied Physics, 2016, 119, .	1.1	31

#	Article	IF	CITATIONS
109	Counter-photo-electromotive force at heterointerfaces in MJ SC: Study by spectral method. AIP Conference Proceedings, 2016, , .	0.3	6
110	Metamorphic InGaAs photo-converters on GaAs substrates. Journal of Physics: Conference Series, 2016, 690, 012032.	0.3	2
111	The temperature dependence of the characteristics of crystalline-silicon-based heterojunction solar cells. Technical Physics Letters, 2016, 42, 313-316.	0.2	7
112	On current spreading in solar cells: a two-parameter tube model. Semiconductors, 2016, 50, 970-975.	0.2	4
113	Current flow mechanism in GaAs solar cells with GaInAs quantum dots. AIP Conference Proceedings, 2016, , .	0.3	12
114	Optimization of structural and growth parameters of metamorphic InGaAs/GaAs photoconverters grown by MOCVD. Journal of Physics: Conference Series, 2016, 741, 012086.	0.3	6
115	Heterostructures of metamorphic GalnAs photovoltaic converters fabricated by MOCVD on GaAs substrates. Semiconductors, 2016, 50, 517-522.	0.2	10
116	Simulation of the ohmic loss in photovoltaic laser-power converters for wavelengths of 809 and 1064 nm. Semiconductors, 2016, 50, 125-131.	0.2	15
117	Simulation of the characteristics of InGaAs/InP-based photovoltaic laser-power converters. Semiconductors, 2016, 50, 132-137.	0.2	6
118	Temperature influence on luminescent coupling efficiency in concentrator MJ SCs. AIP Conference Proceedings, 2015, , .	0.3	5
119	Low temperature measurements of state-of-the-art concentrator solar cells. AIP Conference Proceedings, 2015, , .	0.3	0
120	AlGaAs converters and arrays for laser power beaming. AIP Conference Proceedings, 2015, , .	0.3	5
121	Heterointerfaces in MJ SC: IV curves and their peculiarities. AIP Conference Proceedings, 2015, , .	0.3	3
122	Bifacial concentrator Agâ€free crystalline nâ€type Si solar cell. Progress in Photovoltaics: Research and Applications, 2015, 23, 600-610.	4.4	32
123	Elimination of light coupling negative effect on the accuracy of external quantum yield determination in a MJ SC. Journal of Physics: Conference Series, 2015, 643, 012064.	0.3	3
124	Photovoltaic converters of concentrated sunlight, based on InGaAsP(1.0 eV)/InP heterostructures. Semiconductors, 2015, 49, 700-703.	0.2	14
125	The Segmental Approximation in Multijunction Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 1229-1236.	1.5	22
126	Analysis of the Reliability of Measurement Monitoring of the Power Output of Photovoltaic Modules. Measurement Techniques, 2015, 57, 1338-1344.	0.2	0

#	Article	IF	CITATIONS
127	Flexible photovoltaic modules based on amorphous hydrogenated silicon. Semiconductors, 2015, 49, 679-682.	0.2	3
128	Estimation of the potential efficiency of a multijunction solar cell at a limit balance of photogenerated currents. Semiconductors, 2015, 49, 668-673.	0.2	13
129	Experimental model of multi-junction solar cell: IV curve tailoring and photoresponce artifact simulation. Journal of Physics: Conference Series, 2015, 586, 012014.	0.3	2
130	AlGaAs/GaAs photovoltaic converters for high power narrowband radiation. AIP Conference Proceedings, 2014, , .	0.3	20
131	High intensity low temperature (HILT) performance of space concentrator GaInP/GaInAs/Ge MJ SCs. , 2014, , .		5
132	Temperature of solar cells with regard to photoactive and non-photoactive light absorption in concentrator PV modules. , 2014, , .		4
133	Indoor modeling of the wind pressure in solar installations with flat and step-like frames for HCPV modules. , 2014, , .		Ο
134	Estimate of the Expanded Uncertainty in the Result of Measuring the Short Circuit Current of Thin-Film Photovoltaic Modules. Measurement Techniques, 2014, 56, 1209-1215.	0.2	0
135	Concentrator bifacial Ag-free LGCells. Solar Energy, 2014, 106, 88-94.	2.9	22
136	Subtractive method for obtaining the dark current-voltage characteristic and its types for the residual (nongenerating) part of a multi-junction solar cell. Semiconductors, 2014, 48, 653-658.	0.2	2
137	Photoresponse of a silicon multipixel photon counter in the vacuum ultraviolet range. Technical Physics Letters, 2014, 40, 330-332.	0.2	4
138	Semitransparent solar modules based on amorphous and microcrystalline silicon. Journal of Physics: Conference Series, 2014, 572, 012049.	0.3	6
139	Spectral-splitting concentrator photovoltaic modules based on AlGaAs/GaAs/GaSb and GaInP/InGaAs(P) solar cells. Technical Physics, 2013, 58, 1034-1038.	0.2	10
140	Analysis of light-induced degradation mechanisms in α-Si:H/μc-Si:H solar photovoltaics. Semiconductors, 2013, 47, 1252-1257.	0.2	0
141	Method for studying the light-induced degradation of α-Si:H/μc-Si:H tandem photovoltaic converters under increased illuminance. Semiconductors, 2013, 47, 1376-1381.	0.2	Ο
142	Photoinduced degradation of α-Si:H/μc-Si:H tandem photoconvertes at elevated temperatures. Technical Physics Letters, 2013, 39, 906-909.	0.2	2
143	Study of the light-induced degradation of tandem α-Si:H/μc-Si:H photovoltaic converters. Semiconductors, 2013, 47, 679-685.	0.2	7
144	Bifacial low concentrator argentum free crystalline silicon solar cells based on ARC of TCO and current collecting grid of copper wire. , 2013, , .		7

1

#	Article	IF	CITATIONS
145	Method for direct measurements of luminescent coupling efficiency in concentrator MJ SCs. AIP Conference Proceedings, 2013, , .	0.3	16
146	Experimental characterization and self-consistent modeling of luminescence coupling effect in III-V multijunction solar cells. Applied Physics Letters, 2013, 103, .	1.5	23
147	Multijunction solar cell with intermediate IR reflector. AIP Conference Proceedings, 2012, , .	0.3	4
148	Influence of the position of InGaAs quantum dot array on the spectral characteristics of AlGaAs/GaAs photovoltaic converters. Technical Physics Letters, 2012, 38, 1024-1026.	0.2	2
149	n-Si bifacial concentrator solar cell. Semiconductors, 2012, 46, 1194-1200.	0.2	18
150	Evaluation of the solar cell internal resistance in I-V measurements under flash illumination. , 2012, , .		7
151	High-efficiency (η = 39.6%, AM 1.5D) cascade of photoconverters in solar splitting systems. Semiconductors, 2011, 45, 792-797.	0.2	11
152	Development of Lens Concentration Systems with Secondary Optical Elements. , 2010, , .		0
153	Thermophotovoltaic generators based on gallium antimonide. Semiconductors, 2010, 44, 255-262.	0.2	18
154	Study of minority carrier diffusion lengths in photoactive layers of multijunction solar cells. Semiconductors, 2010, 44, 1084-1089.	0.2	19
155	Germanium subcells for multijunction GaInP/GaInAs/Ge solar cells. Semiconductors, 2010, 44, 1520-1528.	0.2	21
156	Multijunction GaInP/GaInAs/Ge solar cells with Bragg reflectors. Semiconductors, 2010, 44, 1600-1605.	0.2	15
157	Native defect concentration in Czochralski-grown Te-doped GaSb by photoluminescence. Solar Energy Materials and Solar Cells, 2010, 94, 1113-1117.	3.0	15
158	The effect of temperature on the efficiency of concentrator PV modules with MJ SC. , 2009, , .		1
159	AlGaAs/GaAs photovoltaic cells with an array of InGaAs QDs. Semiconductors, 2009, 43, 514-518.	0.2	143
160	Solar cells based on gallium antimonide. Semiconductors, 2009, 43, 668-671.	0.2	30
161	Properties of interfaces in GaInP solar cells. Semiconductors, 2009, 43, 1363-1368.	0.2	11

162 Development and testing of high concentration flat-plate Fresnel lenses. , 2009, , .

#	Article	IF	CITATIONS
163	Improvement of radiation resistance of multijunction solar cells by application of Bragg reflectors. , 2009, , .		Ο
164	Numerical modelling of GaInP solar cells with AlInP and AlGaAs windows. Thin Solid Films, 2008, 516, 6739-6743.	0.8	42
165	On the influence of real operating conditions on the energetic parameters of different types of solar photoelectric facilities. Applied Solar Energy (English Translation of Geliotekhnika), 2008, 44, 153-157.	0.2	Ο
166	Optimization of arrangement of photoelectric power plants with radiation concentrators in solar electric power plant design. Applied Solar Energy (English Translation of Geliotekhnika), 2008, 44, 237-242.	0.2	2
167	On correct estimation of hourly power output of solar photovoltaic installations with MJ SCs and sunlight concentrators. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	9
168	Flat-plate Fresnel lenses with improved concentrating capabilities: Designing, manufacturing and testing. , 2008, , .		7
169	Photovoltaic Cells Based on GaSb and Ge for Solar and Thermophotovoltaic Applications. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 291-297.	1.1	22
170	GaSb Applications for Solar Thermophotovoltaic Conversion. AlP Conference Proceedings, 2007, , .	0.3	3
171	Thermophotovoltaic GaSb Cells Fabrication and Characterisation. AlP Conference Proceedings, 2007, , \cdot	0.3	2
172	High-efficiency dual-junction GaInP/GaAs tandem solar cells obtained by the method of MOCVD. Semiconductors, 2007, 41, 727-731.	0.2	21
173	A high-temperature solar source of heat for a thermophotovoltaic generator: Theory and experiment. Thermal Engineering (English Translation of Teploenergetika), 2007, 54, 620-625.	0.4	1
174	Effect of chromatic aberration on the concentration of solar radiation by fresnel lenses. Technical Physics Letters, 2006, 32, 1039-1042.	0.2	8
175	High-efficiency (49%) and high-power photovoltaic cells based on gallium antimonide. Semiconductors, 2006, 40, 1242-1246.	0.2	15
176	Photoconverters for Solar TPV Systems. , 2006, , .		6
177	Tunnel Diode Revealing Peculiarities at I-V Measurements in Multijunction III-V Solar Cells. , 2006, , .		15
178	Thermophotovoltaic Cells Based on Low-Bandgap Compounds. AIP Conference Proceedings, 2004, , .	0.3	6
179	GaAs/Ge heterostructure photovoltaic cells fabricated by a combination of MOCVD and zinc diffusion techniques. Semiconductors, 2004, 38, 355-359.	0.2	13
180	Thermophotovoltaic cells for conversion of thermal radiation and concentrated sunlight to electricity. Semiconductors, 2004, 38, 950-955.	0.2	8

#	Article	IF	CITATIONS
181	Concentrator PV modules and solar cells for TPV systems. Solar Energy Materials and Solar Cells, 2004, 84, 3-17.	3.0	82
182	Photoconverters based on GaAs/Ge heterostructures grown by low-temperature liquid phase epitaxy. Technical Physics Letters, 2003, 29, 592-593.	0.2	1
183	InAs based multicomponent solid solutions for thermophotovoltaic converters. Technical Physics Letters, 2003, 29, 851-852.	0.2	13
184	Low-Bandgap Ge and InAsSbP/InAs-Based TPV Cells. AIP Conference Proceedings, 2003, , .	0.3	7
185	Radiation resistant AlGaAs/GaAs concentrator solar cells with internal Bragg reflector. Solar Energy Materials and Solar Cells, 2001, 68, 105-122.	3.0	43
186	Progress in development of all-glass terrestrial concentrator modules based on composite Fresnel lenses and III-V solar cells. , 2000, , .		13
187	A comparison of the temperature dependences of photoeffect quantum efficiencies in GaAs p-n structures and Schottky diodes. Semiconductors, 1999, 33, 804-806.	0.2	0
188	High-efficiency AlGaAs/GaAs concentrator (2500 suns) solar cells. Semiconductors, 1999, 33, 976-977.	0.2	5
189	Use of direct wafer bonding of silicon for fabricating solar cell structures with vertical p-n junctions. Semiconductors, 1998, 32, 789-791.	0.2	3
190	Characteristic features of silicon multijunction solar cells with vertical p-n junctions. Semiconductors, 1997, 31, 726-727.	0.2	1
191	GaAs and GaSb based solar cells for concentrator and thermophotovoltaic applications. , 1996, , .		4
192	Development of PV receivers for space line-focus concentrator modules. , 1996, , .		1
193	The effects of irradiation on heteroepitaxial InP/InGaAs solar cells. , 1996, , .		1
194	Indoor and outdoor testing of space concentrator AlGaAs/GaAs photovoltaic modules with Fresnel lenses. , 1996, , .		6
195	Tandem GaSb/InGaAsSb thermophotovoltaic cells. , 0, , .		7
196	3.75 MeV electron irradiation of III-V concentrator tandem cells. , 0, , .		0
197	Monolithic two-junction AlGaAs/GaAs solar cells. , 0, , .		4
198	Space concentrator module based on short focus linear Fresnel lenses and GaAs/GaSb tandem stacks. , 0, , .		7

#	Article	IF	CITATIONS
199	Tritium-powered betacells based on Al/sub x/Ga/sub 1-x/As. , 0, , .		13
200	Single-junction GaSb and tandem GaSb/InGaAsSb and AlGaAsSb/GaSb thermophotovoltaic cells. , 0, , .		7
201	Terrestrial and space concentrator PV modules with composite (glass-silicone) Fresnel lenses. , 0, , .		7
202	Zinc-diffused InAsSbP/InAs and Ge TPV cells. , 0, , .		5
203	Photovoltaic cells for solar powered TPV systems. , 0, , .		2
204	Space Fresnel lens concentrator modules with triple-junction solar cells. , 0, , .		0
205	AlGaAs/GaAs Photovoltaic Cells with InGaAs Quantum Dots. Advances in Science and Technology, 0, , .	0.2	15
206	Improved Concentration Capabilities of Flat-Plate Fresnel Lenses. Advances in Science and Technology, 0, , .	0.2	5
207	Effect Irradiation with 15 MeV Protons on Properties of 4H- SiC UV Detectors. Materials Science Forum, 0, 1004, 1104-1108.	0.3	Ο