Sergey Bubennov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3463577/publications.pdf

Version: 2024-02-01

1478505 1372567 23 129 10 6 citations g-index h-index papers 25 25 25 109 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sol-gel synthesis of mesoporous aluminosilicates with a narrow pore size distribution and catalytic activity thereof in the oligomerization of dec-1-ene. Microporous and Mesoporous Materials, 2016, 230, 118-127.	4.4	32
2	High-Crystallinity Granular Zeolites of LTA, FAU, and MOR Structural Types with Hierarchical Porous Structure: Synthesis and Properties. Petroleum Chemistry, 2019, 59, 297-309.	1.4	11
3	Dimerization of norbornene on zeolite catalysts. Chinese Journal of Catalysis, 2015, 36, 268-273.	14.0	9
4	Oligomerization of α-octene catalyzed by zeolites. Catalysis in Industry, 2011, 3, 144-150.	0.7	8
5	Styrene oligomerization catalyzed by zeolites of different structural types. Petroleum Chemistry, 2010, 50, 129-134.	1.4	7
6	Two-step solâ€"gel synthesis of mesoporous aluminosilicates: highly efficient catalysts for the preparation of 3,5-dialkylpyridines. Applied Petrochemical Research, 2018, 8, 141-151.	1.3	7
7	Aluminosilicates with different pores structure in the synthesis of 2,2,4-trimethyl-1,2-dihydroquinoline and N-phenyl-2-propanimine. Russian Chemical Bulletin, 2017, 66, 2115-2121.	1.5	6
8	A hierarchically zeolite Y for the N-heterocyclic compounds synthesis. Journal of Saudi Chemical Society, 2019, 23, 452-460.	5.2	6
9	The Synthesis of (2S, 3S, 4R)-2,3-Dialkyl-N-Phenyl-1,2,3,4-Tetrahydro-4-Quinolinamines in the Presence of Crystalline and Amorphous Aluminosilicates. Petroleum Chemistry, 2020, 60, 525-531.	1.4	5
10	Zeolites in the synthesis of quinolines by the Skraup reaction. Russian Chemical Bulletin, 2020, 69, 525-528.	1.5	5
11	Dimerization of vinylarenes on zeolite catalysts. Petroleum Chemistry, 2009, 49, 16-22.	1.4	4
12	Oligomerization of Unsaturated Compounds in the Presence of Amorphous Mesoporous Aluminosilicates. Petroleum Chemistry, 2019, 59, 682-690.	1.4	4
13	Oligomerization of 1-Pentene on Zeolite Catalysts. Catalysis in Industry, 2020, 12, 47-55.	0.7	4
14	Isoamylene Oligomerization over Zeolite Catalysts. Petroleum Chemistry, 2021, 61, 183-189.	1.4	4
15	Synthesis of Quinolines by the Skraup Reaction: Hierarchical Zeolites vs Microporous Zeolites. ChemistrySelect, 2022, 7, .	1.5	4
16	Codimerisation of styrene and \hat{l}_{\pm} -methylstyrene in the presence of zeolites. Applied Catalysis A: General, 2011, 407, 85-90.	4.3	3
17	Selective dimerization of higher cycloolefins in the presence of micro- and micromesoporous zeolite catalysts. Russian Chemical Bulletin, 2013, 62, 444-449.	1.5	3
18	Mesoporous Aluminosilicates in the Synthesis of N-Heterocyclic Compounds. Kinetics and Catalysis, 2019, 60, 733-743.	1.0	2

#	Article	IF	CITATIONS
19	Microporous and Micro-meso-macroporous Y Zeolites in the Synthesis of 2-Methyl-5-ethylpyridine. Petroleum Chemistry, 2021, 61, 364-369.	1.4	2
20	Oligomerization of 1-octene on micro-mesoporous zeolite catalysts. Petroleum Chemistry, 2013, 53, 407-411.	1.4	1
21	Synthesis of (E)-4-phenyl-3-buten-2-one by the reaction of styrene with acetic anhydride in the presence of zeolite catalysts. Russian Chemical Bulletin, 2013, 62, 435-437.	1.5	1
22	OLIGOMERIZATION OF ISOPENTENE MIXTURES: ANALYSIS OF THE CURRENT STATE AND PROSPECTS FOR THE DEVELOPMENT OF HETEROGENEOUS OLIGOMERIZATION CATALYSTS. Oil and Gas Business, 2020, , 170.	0.1	1
23	ĐĐ°Đ·Ñ€Đ°Đ±Đ¾Ñ,ĐºĐ° ÑĐºĐ¾Đ»Đ¾ĐĐ¸Ñ‡ĐμÑĐºĐ¸ бĐμĐ·Đ¾Đ¿Đ°ÑĐ½Đ¾Đ3Đ¾ ÑĐ¿Đ¾ÑĐ¾Đ±Đ° Đ	³ /4 1 00> 1 0,5	ϴ¾Φ¼ĐμÑ€