Ozgur Kocaturk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3463454/publications.pdf

Version: 2024-02-01

414303 361296 1,137 60 20 32 citations h-index g-index papers 62 62 62 961 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Acoustic impedance measurement of tissue mimicking materials by using scanning acoustic microscopy. Ultrasonics, 2021, 110, 106274.	2.1	14
2	Susceptibility artifacts from metallic markers and cardiac catheterization devices on a high-performance 0.55ÂT MRI system. Magnetic Resonance Imaging, 2021, 77, 14-20.	1.0	15
3	Realâ€time device tracking under MRI using an acoustoâ€optic active marker. Magnetic Resonance in Medicine, 2021, 85, 2904-2914.	1.9	11
4	A 20â€gauge active needle design with thinâ€film printed circuitry for interventional MRI at 0.55T. Magnetic Resonance in Medicine, 2021, 86, 1786-1801.	1.9	8
5	Preliminary Evaluation of Hydraulic Needle Delivery System for Magnetic Resonance Imaging-Guided Prostate Biopsy Procedures. Journal of Medical Devices, Transactions of the ASME, 2021, 15, .	0.4	O
6	Decellularization and characterization of leek: a potential cellulose-based biomaterial. Cellulose, 2020, 27, 7331-7348.	2.4	29
7	Optical Force Sensor With Enhanced Resolution for MRI Guided Biopsy. IEEE Sensors Journal, 2020, 20, 9202-9208.	2.4	17
8	Characterization of carotid endothelial cell proliferation on Au, Au/GO, and Au/rGO surfaces by electrical impedance spectroscopy. Medical and Biological Engineering and Computing, 2020, 58, 1431-1443.	1.6	5
9	Sensitivity and phase response of FBG based acousto-optic sensors for real-time MRI applications. OSA Continuum, 2020, 3, 447.	1.8	9
10	FBG Based Electric Field Sensor for MRI Safety. , 2020, , .		3
10		1.6	3
	FBG Based Electric Field Sensor for MRI Safety. , 2020, , . A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.5 T: freedom from radiofrequency induced heating and preserved mechanical performance.	1.6	
11	FBG Based Electric Field Sensor for MRI Safety. , 2020, , . A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.5 T: freedom from radiofrequency induced heating and preserved mechanical performance. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 16.	2.5	17
11 12	FBG Based Electric Field Sensor for MRI Safety., 2020,,. A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.5 T: freedom from radiofrequency induced heating and preserved mechanical performance. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 16. A Cloud-Based Pectus Bar Designer Software to Enhance Pectus Excavatum Surgeries., 2019,, Acousto-Optic Catheter Tracking Sensor for Interventional MRI Procedures. IEEE Transactions on		0
11 12 13	FBG Based Electric Field Sensor for MRI Safety., 2020,,. A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.53€%T: freedom from radiofrequency induced heating and preserved mechanical performance. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 16. A Cloud-Based Pectus Bar Designer Software to Enhance Pectus Excavatum Surgeries., 2019,,. Acousto-Optic Catheter Tracking Sensor for Interventional MRI Procedures. IEEE Transactions on Biomedical Engineering, 2019, 66, 1148-1154. Phantom study of a fiber optic force sensor design for biopsy needles under MRI. Biomedical Optics	2.5	17 O
11 12 13	FBG Based Electric Field Sensor for MRI Safety., 2020,,. A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.5âc%T: freedom from radiofrequency induced heating and preserved mechanical performance. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 16. A Cloud-Based Pectus Bar Designer Software to Enhance Pectus Excavatum Surgeries., 2019,, Acousto-Optic Catheter Tracking Sensor for Interventional MRI Procedures. IEEE Transactions on Biomedical Engineering, 2019, 66, 1148-1154. Phantom study of a fiber optic force sensor design for biopsy needles under MRI. Biomedical Optics Express, 2019, 10, 242. Thin film based semi-active resonant marker design for low profile interventional cardiovascular MRI	2.5	17 0 13
11 12 13 14	FBG Based Electric Field Sensor for MRI Safety., 2020,,. A cardiovascular magnetic resonance (CMR) safe metal braided catheter design for interventional CMR at 1.5â€%-T: freedom from radiofrequency induced heating and preserved mechanical performance. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 16. A Cloud-Based Pectus Bar Designer Software to Enhance Pectus Excavatum Surgeries., 2019,, Acousto-Optic Catheter Tracking Sensor for Interventional MRI Procedures. IEEE Transactions on Biomedical Engineering, 2019, 66, 1148-1154. Phantom study of a fiber optic force sensor design for biopsy needles under MRI. Biomedical Optics Express, 2019, 10, 242. Thin film based semi-active resonant marker design for low profile interventional cardiovascular MRI devices. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2017, 30, 93-101.	2.5	17 0 13 13

#	Article	IF	Citations
19	Magnetic Resonance Imaging–Guided Transcatheter Cavopulmonary Shunt. JACC: Cardiovascular Interventions, 2016, 9, 959-970.	1.1	23
20	Real-Time Magnetic Resonance Imaging Guidance Improves the Diagnostic Yield ofÂEndomyocardial Biopsy. JACC Basic To Translational Science, 2016, 1, 376-383.	1.9	29
21	CRT-400.10 Real-time MRI Guidance Improves the Diagnostic Yield of Endomyocardial Biopsy Compared With X-ray Fluoroscopy. JACC: Cardiovascular Interventions, 2016, 9, S44.	1.1	О
22	Spiral imaging with off-resonance reconstruction for MRI-guided cardiovascular catheterizations using commercial off-the-shelf nitinol guidewires. Journal of Cardiovascular Magnetic Resonance, 2016, 18, P216.	1.6	0
23	Segmented nitinol guidewires with stiffness-matched connectors for cardiovascular magnetic resonance catheterization: preserved mechanical performance and freedom from heating. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 105.	1.6	28
24	Positive contrast spiral imaging for visualization of commercial nitinol guidewires with reduced heating. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 114.	1.6	12
25	Real-time imaging system using a 12-MHz forward-looking catheter with single chip CMUT-on-CMOS array. , 2015, , .		16
26	Fully Percutaneous Transthoracic Left Atrial Entry and Closure as a Potential Access Route for Transcatheter Mitral Valve Interventions. Circulation: Cardiovascular Interventions, 2015, 8, e002538.	1.4	6
27	Percutaneous MR guided direct left atrial access to deliver large interventional devices. Journal of Cardiovascular Magnetic Resonance, 2015, 17, O19.	1.6	0
28	Transcatheter bidirectional Glenn shunt guided by real-time MRI. Journal of Cardiovascular Magnetic Resonance, 2015, 17, O23.	1.6	2
29	Realtime MR guided endomyocardial biopsy with an active visualization bioptome. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P235.	1.6	1
30	Two channel passive visualization of a nitinol guidewire with iron markers. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P236.	1.6	1
31	Stiffness-matched segmented metallic guidewire for interventional cardiovascular MRI. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P414.	1.6	1
32	Positive contrast spiral imaging of a nitinol guidewire. Journal of Cardiovascular Magnetic Resonance, 2015, 17, Q15.	1.6	2
33	CRT-821 Fully Percutaneous Transthoracic Left Atrial Access To Deliver Large Interventional Devices. JACC: Cardiovascular Interventions, 2015, 8, S54-S55.	1.1	0
34	Transatrial Intrapericardial TricuspidÂAnnuloplasty. JACC: Cardiovascular Interventions, 2015, 8, 483-491.	1.1	70
35	Real-time cardiovascular magnetic resonance subxiphoid pericardial access and pericardiocentesis using off-the-shelf devices in swine. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 61.	1.6	22
36	Real-time MRI-guided right heart catheterization in adults using passive catheters. European Heart Journal, 2013, 34, 380-389.	1.0	88

3

#	Article	IF	CITATIONS
37	Transthoracic delivery of large devices into the left ventricle through the right ventricle and interventricular septum: preclinical feasibility. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 10.	1.6	20
38	Self-Expanding Stent and Delivery System for Aortic Valve Replacement. Journal of Medical Devices, Transactions of the ASME, 2012, 6, 410061-410069.	0.4	6
39	MRI active guidewire with an embedded temperature probe and providing a distinct tip signal to enhance clinical safety. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 30.	1.6	38
40	A deflectable guiding catheter for realâ€time MRIâ€guided interventions. Journal of Magnetic Resonance Imaging, 2012, 35, 908-915.	1.9	32
41	Active delivery cable tuned to device deployment state: Enhanced visibility of nitinol occluders during preclinical interventional MRI. Journal of Magnetic Resonance Imaging, 2012, 36, 972-978.	1.9	6
42	Experimental Model of Large Pulmonary Embolism Employing Controlled Release of Subacute Caval Thrombus in Swine. Journal of Vascular and Interventional Radiology, 2011, 22, 1471-1477.	0.2	13
43	Direct Percutaneous Left Ventricular Access and Port Closure. JACC: Cardiovascular Interventions, 2011, 4, 1318-1325.	1.1	21
44	Closed-Chest Transthoracic Magnetic Resonance Imaging-Guided Ventricular Septal Defect Closure in Swine. JACC: Cardiovascular Interventions, 2011, 4, 1326-1334.	1.1	25
45	Adaptive noise cancellation to suppress electrocardiography artifacts during realâ€time interventional MRI. Journal of Magnetic Resonance Imaging, 2011, 33, 1184-1193.	1.9	35
46	MRIâ€guided vascular access with an active visualization needle. Journal of Magnetic Resonance Imaging, 2011, 34, 1159-1166.	1.9	18
47	Limitations of closing percutaneous transthoracic ventricular access ports using a commercial collagen vascular closure device. Catheterization and Cardiovascular Interventions, 2011, 77, 1079-1085.	0.7	9
48	Transapical aortic valve replacement under real-time magnetic resonance imaging guidance: experimental results with balloon-expandable and self-expanding stents. European Journal of Cardio-thoracic Surgery, 2011, 39, 822-828.	0.6	25
49	Visualization of active devices and automatic slice repositioning ("SnapToâ€) for MRI-guided interventions. Magnetic Resonance in Medicine, 2010, 63, 1070-1079.	1.9	14
50	Closed chest transthoracic perventricular ventricular septal defect closure under real-time MRI. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	1.6	0
51	Active twoâ€channel 0.035″ guidewire for interventional cardiovascular MRI. Journal of Magnetic Resonance Imaging, 2009, 30, 461-465.	1.9	24
52	Whole shaft visibility and mechanical performance for active MR catheters using copper-nitinol braided polymer tubes. Journal of Cardiovascular Magnetic Resonance, 2009, 11, 29.	1.6	25
53	Mitral Cerclage Annuloplasty, A Novel Transcatheter Treatment for Secondary Mitral Valve Regurgitation. Journal of the American College of Cardiology, 2009, 54, 638-651.	1.2	64
54	Interventional cardiovascular magnetic resonance: still tantalizing. Journal of Cardiovascular Magnetic Resonance, 2008, 10, 62.	1.6	71

#	ARTICLE	IF	CITATION
55	Real-Time MR Imaging–guided Laser Atrial Septal Puncture in Swine. Journal of Vascular and Interventional Radiology, 2008, 19, 1347-1353.	0.2	14
56	Beating Heart Aortic Valve Replacement using Real-Time MRI Guidance. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2007, 2, 51-55.	0.4	18
57	Blunt atrial transseptal puncture using excimer laser in swine. Catheterization and Cardiovascular Interventions, 2007, 70, 585-590.	0.7	15
58	Beating Heart Aortic Valve Replacement Using Real-Time MRI Guidance. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 2007, 2, 51-55.	0.4	1
59	Real-time interactive MRI-guided cardiac surgery: Aortic valve replacement using a direct apical approach. Magnetic Resonance in Medicine, 2006, 56, 958-964.	1.9	111
60	Real-Time Magnetic Resonance Imaging–Guided Endovascular Recanalization of Chronic Total Arterial Occlusion in a Swine Model. Circulation, 2006, 113, 1101-1107.	1.6	62