
Armin Scheben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3463299/publications.pdf Version: 2024-02-01

ADMIN SCHEREN

#	Article	IF	CITATIONS
1	Plant pan-genomes are the new reference. Nature Plants, 2020, 6, 914-920.	4.7	302
2	Genotypingâ€byâ€sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnology Journal, 2017, 15, 149-161.	4.1	240
3	Towards <scp>CRISPR</scp> /Cas crops – bringing together genomics and genome editing. New Phytologist, 2017, 216, 682-698.	3.5	235
4	Advances in genomics for adapting crops to climate change. Current Plant Biology, 2016, 6, 2-10.	2.3	82
5	The Chicken Pan-Genome Reveals Gene Content Variation and a Promoter Region Deletion in <i>IGF2BP1</i> Affecting Body Size. Molecular Biology and Evolution, 2021, 38, 5066-5081.	3.5	70
6	Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes. Frontiers in Plant Science, 2017, 8, 1461.	1.7	60
7	Genome editors take on crops. Science, 2017, 355, 1122-1123.	6.0	59
8	Advances in Integrating Genomics and Bioinformatics in the Plant Breeding Pipeline. Agriculture (Switzerland), 2018, 8, 75.	1.4	55
9	Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Current Opinion in Plant Biology, 2018, 45, 218-225.	3.5	46
10	Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biology, 2018, 19, 178.	3.8	45
11	Modelling of gene loss propensity in the pangenomes of three <i>Brassica</i> species suggests different mechanisms between polyploids and diploids. Plant Biotechnology Journal, 2021, 19, 2488-2500.	4.1	44
12	Integrative taxonomy of Lepidolejeunea (Jungermanniopsida: Porellales): Ocelli allow the recognition of two neglected species. Taxon, 2015, 64, 216-228.	0.4	40
13	Genetic and signalling pathways of dry fruit size: targets for genome editingâ€based crop improvement. Plant Biotechnology Journal, 2020, 18, 1124-1140.	4.1	40
14	Genotype–Environment mismatch of kelp forests under climate change. Molecular Ecology, 2021, 30, 3730-3746.	2.0	39
15	ITS Polymorphisms Shed Light on Hybrid Evolution in Apomictic Plants: A Case Study on the Ranunculus auricomus Complex. PLoS ONE, 2014, 9, e103003.	1.1	38
16	Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Review of Palaeobotany and Palynology, 2015, 221, 59-70.	0.8	36
17	Multiple transoceanic dispersals and geographical structure in the pantropical leafy liverwort <i>Ceratolejeunea</i> (Lejeuneaceae, Porellales). Journal of Biogeography, 2016, 43, 1739-1749.	1.4	30
18	Single-Cell Genomic Analysis in Plants. Genes, 2018, 9, 50.	1.0	25

ARMIN SCHEBEN

#	Article	IF	CITATIONS
19	CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat. Plant Journal, 2019, 98, 142-152.	2.8	21
20	Crown Group Lejeuneaceae and Pleurocarpous Mosses in Early Eocene (Ypresian) Indian Amber. PLoS ONE, 2016, 11, e0156301.	1.1	20
21	Towards a monophyletic classification of Lejeuneaceae I: subtribe Leptolejeuneinae subtr. nov Phytotaxa, 2014, 156, 165.	0.1	19
22	Molecular and Morphological Evidence Challenges the Records of the Extant Liverwort Ptilidium pulcherrimum in Eocene Baltic Amber. PLoS ONE, 2015, 10, e0140977.	1.1	17
23	<i>Amborella</i> gene presence/absence variation is associated with abiotic stress responses that may contribute to environmental adaptation. New Phytologist, 2022, 233, 1548-1555.	3.5	16
24	Transfer of Lejeunea huctumalcensis to Physantholejeunea (Lejeuneaceae, Porellales). Australian Systematic Botany, 2013, 26, 386.	0.3	15
25	Can We Use Gene-Editing to Induce Apomixis in Sexual Plants?. Genes, 2020, 11, 781.	1.0	15
26	The Bromeliaceae tank dweller Bromeliophila (Lejeuneaceae, Porellales) is a member of the Cyclolejeunea-Prionolejeunea clade. Plant Systematics and Evolution, 2014, 300, 63-73.	0.3	14
27	Revolution in Genotyping Platforms for Crop Improvement. Advances in Biochemical Engineering/Biotechnology, 2018, 164, 37-52.	0.6	14
28	An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea. Scientific Reports, 2020, 10, 14123.	1.6	12
29	Linkage mapping and QTL analysis of flowering time using ddRAD sequencing with genotype error correction in Brassica napus. BMC Plant Biology, 2020, 20, 546.	1.6	10
30	BioNanoAnalyst: a visualisation tool to assess genome assembly quality using BioNano data. BMC Bioinformatics, 2017, 18, 323.	1.2	9
31	Databases for Wheat Genomics and Crop Improvement. Methods in Molecular Biology, 2017, 1679, 277-291.	0.4	8
32	Genotyping for Species Identification and Diversity Assessment Using Double-Digest Restriction Site-Associated DNA Sequencing (ddRAD-Seq). Methods in Molecular Biology, 2020, 2107, 159-187.	0.4	8
33	Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants. Plant Cell, 2021, 33, 3454-3469.	3.1	7
34	Legume Pangenome Construction Using an Iterative Mapping and Assembly Approach. Methods in Molecular Biology, 2020, 2107, 35-47.	0.4	7
35	De Novo SNP Discovery and Genotyping of Iranian Pimpinella Species Using ddRAD Sequencing. Agronomy, 2021, 11, 1342.	1.3	6
36	Toward haplotype studies in polyploid plants to assist breeding. Molecular Plant, 2021, 14, 1969-1972.	3.9	6

#	Article	IF	CITATIONS
37	The first ptychanthoid Lejeuneaceae in Miocene Mexican amber. Telopea, 0, 17, 355-361.	0.4	5
38	A multiple alignment workflow shows the effect of repeat masking and parameter tuning on alignment in plants. Plant Genome, 2022, 15, e20204.	1.6	5
39	Using Genomics to Adapt Crops to Climate Change. , 2019, , 91-109.		4
40	Progress in single-access information systems for wheat and rice crop improvement. Briefings in Bioinformatics, 2019, 20, 565-571.	3.2	4