
A Maxwell Burroughs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3463152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An atlas of active enhancers across human cell types and tissues. Nature, 2014, 507, 455-461.	27.8	2,269
2	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	27.8	1,838
3	An atlas of human long non-coding RNAs with accurate 5′ ends. Nature, 2017, 543, 199-204.	27.8	898
4	An integrated expression atlas of miRNAs and their promoters in human and mouse. Nature Biotechnology, 2017, 35, 872-878.	17.5	456
5	Evolutionary Genomics of the HAD Superfamily: Understanding the Structural Adaptations and Catalytic Diversity in a Superfamily of Phosphoesterases and Allied Enzymes. Journal of Molecular Biology, 2006, 361, 1003-1034.	4.2	376
6	A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Research, 2010, 20, 1398-1410.	5.5	309
7	Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biology Direct, 2013, 8, 15.	4.6	221
8	Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature, 2011, 480, 391-395.	27.8	203
9	Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling. Nucleic Acids Research, 2015, 43, 10633-10654.	14.5	200
10	The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biology, 2006, 7, R60.	9.6	148
11	PAPD5-mediated 3′ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11467-11472.	7.1	130
12	Small but versatile: the extraordinary functional and structural diversity of the β-grasp fold. Biology Direct, 2007, 2, 18.	4.6	127
13	Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature, 2018, 557, 446-451.	27.8	122
14	Computational identification of novel biochemical systems involved in oxidation, glycosylation and other complex modifications of bases in DNA. Nucleic Acids Research, 2013, 41, 7635-7655.	14.5	115
15	Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteins. Molecular BioSystems, 2009, 5, 1636.	2.9	95
16	Anatomy of the E2 ligase fold: Implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. Journal of Structural Biology, 2008, 162, 205-218.	2.8	93
17	Natural history of the E1â€like superfamily: Implication for adenylation, sulfur transfer, and ubiquitin conjugation. Proteins: Structure, Function and Bioinformatics, 2009, 75, 895-910.	2.6	86
18	Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2479-2484.	7.1	64

#	Article	IF	CITATIONS
19	RNA damage in biological conflicts and the diversity of responding RNA repair systems. Nucleic Acids Research, 2016, 44, 8525-8555.	14.5	64
20	Global analysis of pre-mRNA subcellular localization following splicing inhibition by spliceostatin A. Rna, 2017, 23, 47-57.	3.5	61
21	NONU-1 Encodes a Conserved Endonuclease Required for mRNA Translation Surveillance. Cell Reports, 2020, 30, 4321-4331.e4.	6.4	60
22	Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. Molecular BioSystems, 2011, 7, 2261.	2.9	55
23	Transposons to toxins: the provenance, architecture and diversification of a widespread class of eukaryotic effectors. Nucleic Acids Research, 2016, 44, 3513-3533.	14.5	54
24	Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses, 2021, 13, 63.	3.3	54
25	Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria. Nature, 2022, 603, 503-508.	27.8	50
26	Identification of Uncharacterized Components of Prokaryotic Immune Systems and Their Diverse Eukaryotic Reformulations. Journal of Bacteriology, 2020, 202, .	2.2	49
27	The ASCH superfamily: novel domains with a fold related to the PUA domain and a potential role in RNA metabolism. Bioinformatics, 2006, 22, 257-263.	4.1	47
28	A novel superfamily containing the beta-grasp fold involved in binding diverse soluble ligands. Biology Direct, 2007, 2, 4.	4.6	46
29	Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Biology Direct, 2013, 8, 13.	4.6	45
30	Resilience of biochemical activity in protein domains in the face of structural divergence. Current Opinion in Structural Biology, 2014, 26, 92-103.	5.7	39
31	Comprehensive classification of ABC ATPases and their functional radiation in nucleoprotein dynamics and biological conflict systems. Nucleic Acids Research, 2020, 48, 10045-10075.	14.5	39
32	The Origin and Evolution of Release Factors: Implications for Translation Termination, Ribosome Rescue, and Quality Control Pathways. International Journal of Molecular Sciences, 2019, 20, 1981.	4.1	38
33	Structure and Evolution of Ubiquitin and Ubiquitin-Related Domains. Methods in Molecular Biology, 2012, 832, 15-63.	0.9	37
34	A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications. RNA Biology, 2014, 11, 360-372.	3.1	35
35	Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements. Journal of Bacteriology, 2017, 199, .	2.2	33
36	An RNA Repair Operon Regulated by Damaged tRNAs. Cell Reports, 2020, 33, 108527.	6.4	33

3

#	Article	IF	CITATIONS
37	Structural and Functional Characterization of MppR, an Enduracididine Biosynthetic Enzyme from <i>Streptomyces hygroscopicus</i> : Functional Diversity in the Acetoacetate Decarboxylase-like Superfamily. Biochemistry, 2013, 52, 4492-4506.	2.5	31
38	pre-miRNA profiles obtained through application of locked nucleic acids and deep sequencing reveals complex 5′/3′ arm variation including concomitant cleavage and polyuridylation patterns. Nucleic Acids Research, 2012, 40, 1424-1437.	14.5	30
39	Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. ELife, 2020, 9, .	6.0	30
40	Protein and DNA Modifications: Evolutionary Imprints of Bacterial Biochemical Diversification and Geochemistry on the Provenance of Eukaryotic Epigenetics. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016063-a016063.	5.5	26
41	Oxidative opening of the aromatic ring: Tracing the natural history of a large superfamily of dioxygenase domains and their relatives. Journal of Biological Chemistry, 2019, 294, 10211-10235.	3.4	24
42	Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis. Frontiers in Genetics, 2014, 5, 424.	2.3	21
43	Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. ELife, 2021, 10, .	6.0	17
44	Deciphering the Role of a SLOG Superfamily Protein YpsA in Gram-Positive Bacteria. Frontiers in Microbiology, 2019, 10, 623.	3.5	15
45	Discovering Biological Conflict Systems Through Genome Analysis: Evolutionary Principles and Biochemical Novelty. Annual Review of Biomedical Data Science, 2022, 5, 367-391.	6.5	15
46	Novel clades of the HU/IHF superfamily point to unexpected roles in the eukaryotic centrosome, chromosome partitioning, and biologic conflicts. Cell Cycle, 2017, 16, 1093-1103.	2.6	14
47	Identifying and characterizing functional 3′ nucleotide addition in the miRNA pathway. Methods, 2019, 152, 23-30.	3.8	12
48	Exploring allosteric activation of LigAB from Sphingobium sp. strain SYK-6 through kinetics, mutagenesis and computational studies. Archives of Biochemistry and Biophysics, 2015, 567, 35-45.	3.0	11
49	The eukaryotic translation initiation regulator CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein modifications. Biology Direct, 2015, 10, 21.	4.6	9
50	Functional Innovation in the Evolution of the Calcium-Dependent System of the Eukaryotic Endoplasmic Reticulum. Frontiers in Genetics, 2020, 11, 34.	2.3	9
51	Unexpected Evolution of Lesion-Recognition Modules in Eukaryotic NER and Kinetoplast DNA Dynamics Proteins from Bacterial Mobile Elements. IScience, 2018, 9, 192-208.	4.1	8
52	Spliceostatin A interaction with SF3B limits U1 snRNP availability and causes premature cleavage and polyadenylation. Cell Chemical Biology, 2021, 28, 1356-1365.e4.	5.2	8
53	RNA-Interference Components Are Dispensable for Transcriptional Silencing of the Drosophila Bithorax-Complex. PLoS ONE, 2013, 8, e65740.	2.5	7
54	The Xâ€ray crystallographic structure and activity analysis of a <i>Pseudomonasâ€</i> specific subfamily of the HAD enzyme superfamily evidences a novel biochemical function. Proteins: Structure, Function and Bioinformatics, 2008, 70, 197-207.	2.6	5