Siegfried Janz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3463009/publications.pdf

Version: 2024-02-01

115	3,649	31 h-index	57
papers	citations		g-index
117	117	117	4789
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multicolour spectral karyotyping of mouse chromosomes. Nature Genetics, 1996, 14, 312-315.	9.4	307
2	Regulation of AID expression in the immune response. Journal of Experimental Medicine, 2007, 204, 1145-1156.	4.2	229
3	Burkitt Lymphoma in the Mouse. Journal of Experimental Medicine, 2000, 192, 1183-1190.	4.2	195
4	Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF. Molecular Cancer, 2007, 6, 71.	7.9	155
5	Lymphoma- and leukemia-associated chromosomal translocations in healthy individuals. Genes Chromosomes and Cancer, 2003, 36, 211-223.	1.5	136
6	IL-6 transgenic mouse model for extraosseous plasmacytoma. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1509-1514.	3.3	123
7	HHV-8–encoded viral IL-6 collaborates with mouse IL-6 in the development of multicentric Castleman disease in mice. Blood, 2012, 119, 5173-5181.	0.6	110
8	Insertion of c-Myc into Igh Induces B-Cell and Plasma-Cell Neoplasms in Mice. Cancer Research, 2005, 65, 1306-1315.	0.4	105
9	Antitumor Activity of the Investigational Proteasome Inhibitor MLN9708 in Mouse Models of B-cell and Plasma Cell Malignancies. Clinical Cancer Research, 2011, 17, 7313-7323.	3.2	101
10	NF-κB/STAT3/PI3K signaling crosstalk in iMycEν B lymphoma. Molecular Cancer, 2010, 9, 97.	7.9	99
11	Myc translocations in B cell and plasma cell neoplasms. DNA Repair, 2006, 5, 1213-1224.	1.3	92
12	Novel targeted deregulation of c-Myc cooperates with Bcl-XL to cause plasma cell neoplasms in mice. Journal of Clinical Investigation, 2004, 113 , 1763 - 1773 .	3.9	84
13	Prevalence and frequency of circulating t(14;18)â€MBR translocation carrying cells in healthy individuals. International Journal of Cancer, 2009, 124, 958-963.	2.3	82
14	HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. Journal of Hematology and Oncology, 2021, 14, 54.	6.9	75
15	Novel targeted deregulation of c-Myc cooperates with Bcl-XL to cause plasma cell neoplasms in mice. Journal of Clinical Investigation, 2004, 113, 1763-1773.	3.9	70
16	Profiling Bortezomib Resistance Identifies Secondary Therapies in a Mouse Myeloma Model. Molecular Cancer Therapeutics, 2013, 12, 1140-1150.	1.9	68
17	Bruton Tyrosine Kinase Is a Therapeutic Target in Stem-like Cells from Multiple Myeloma. Cancer Research, 2015, 75, 594-604.	0.4	65
18	B-cell activating factor and v-Myc myelocytomatosis viral oncogene homolog (c-Myc) influence progression of chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18956-18960.	3.3	64

#	Article	IF	Citations
19	Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma. Immunologic Research, 2014, 59, 188-202.	1.3	57
20	Piperlongumine inhibits proliferation and survival of Burkitt lymphoma in vitro. Leukemia Research, 2013, 37, 146-154.	0.4	56
21	NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma. Oncotarget, 2014, 5, 11986-11997.	0.8	54
22	IL-6 and MYC collaborate in plasma cell tumor formation in mice. Blood, 2010, 115, 1746-1754.	0.6	49
23	COMBO-FISH: specific labeling of nondenatured chromatin targets by computer-selected DNA oligonucleotide probe combinations. BioTechniques, 2003, 35, 564-577.	0.8	47
24	Deletional remodeling of c-myc-deregulating chromosomal translocations. Oncogene, 1997, 15, 2369-2377.	2.6	46
25	AID-deficient Bcl-xL transgenic mice develop delayed atypical plasma cell tumors with unusual Ig/Myc chromosomal rearrangements. Journal of Experimental Medicine, 2007, 204, 2989-3001.	4.2	45
26	A Transgenic Mouse Model of Plasma Cell Malignancy Shows Phenotypic, Cytogenetic, and Gene Expression Heterogeneity Similar to Human Multiple Myeloma. Cancer Research, 2007, 67, 4069-4078.	0.4	43
27	Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?. Oncotarget, 2015, 6, 40496-40506.	0.8	42
28	PIAS1 Promotes Lymphomagenesis through MYC Upregulation. Cell Reports, 2016, 15, 2266-2278.	2.9	39
29	Deregulated expression of the Myc cellular oncogene drives development of mouse "Burkitt-like― lymphomas from naive B cells. Blood, 2005, 105, 2135-2137.	0.6	38
30	Selenium Deficiency Abrogates Inflammation-Dependent Plasma Cell Tumors in Mice. Cancer Research, 2004, 64, 2910-2917.	0.4	35
31	Distribution of $t(14;18)$ -positive, putative lymphoma precursor cells among B-cell subsets in healthy individuals. British Journal of Haematology, 2007, 138, 349-353.	1.2	33
32	Identification and Characterization of Tumor-Initiating Cells in Multiple Myeloma. Journal of the National Cancer Institute, 2020, 112, 507-515.	3.0	33
33	CHEK1 and circCHEK1_246aa evoke chromosomal instability and induce bone lesion formation in multiple myeloma. Molecular Cancer, 2021, 20, 84.	7.9	33
34	RIP1 Cleavage in the Kinase Domain Regulates TRAIL-Induced NF-κB Activation and Lymphoma Survival. Molecular and Cellular Biology, 2015, 35, 3324-3338.	1.1	28
35	Characterization of ARF-BP1/HUWE1 Interactions with CTCF, MYC, ARF and p53 in MYC-Driven B Cell Neoplasms. International Journal of Molecular Sciences, 2012, 13, 6204-6219.	1.8	27
36	NAT10 promotes cell proliferation by acetylating CEP170 mRNA to enhance translation efficiency in multiple myeloma. Acta Pharmaceutica Sinica B, 2022, 12, 3313-3325.	5.7	27

#	Article	IF	CITATIONS
37	Genomic instability in mouse Burkitt lymphoma is dominated by illegitimate genetic recombinations, not point mutations. Oncogene, 2002, 21, 7235-7240.	2.6	26
38	Anaplastic, Plasmablastic, and Plasmacytic Plasmacytomas of Mice: Relationships to Human Plasma Cell Neoplasms and Late-Stage Differentiation of Normal B Cells. Cancer Research, 2007, 67, 2439-2447.	0.4	26
39	Piperlongumine inhibits LMP1/MYC-dependent mouse B-lymphoma cells. Biochemical and Biophysical Research Communications, 2013, 436, 660-665.	1.0	26
40	BCL2 accelerates inflammation-induced BALB/c plasmacytomas and promotes novel tumors with coexisting $T(12;15)$ and $T(6;15)$ translocations. Cancer Research, 2003, 63, 8656-63.	0.4	26
41	Conformational differences in the 3-D nanostructure of the immunoglobulin heavy-chain locus, a hotspot of chromosomal translocations in B lymphocytes. Cancer Genetics and Cytogenetics, 2001, 127, 168-173.	1.0	24
42	Insertion of <i>Myc</i> into <i>Igh</i> Accelerates Peritoneal Plasmacytomas in Mice. Cancer Research, 2005, 65, 7644-7652.	0.4	24
43	Deregulation of c-Myc Confers Distinct Survival Requirements for Memory B Cells, Plasma Cells, and Their Progenitors. Journal of Immunology, 2008, 181, 7537-7549.	0.4	24
44	Elevated presence of retrotransposons at sites of DNA double strand break repair in mouse models of metabolic oxidative stress and MYC-induced lymphoma. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 548, 117-125.	0.4	23
45	t(14;18) Translocations and Risk of Follicular Lymphoma. Journal of the National Cancer Institute Monographs, 2008, 2008, 48-51.	0.9	23
46	Waldenström Macroglobulinemia: Clinical and Immunological Aspects, Natural History, Cell of Origin, and Emerging Mouse Models. ISRN Hematology, 2013, 2013, 1-25.	1.6	23
47	Modulation of the H2O2-induced SOS response in escherichia coli PQ300 by amino acids, metal chelators, antioxidants, and scavengers of reactive oxygen species. Environmental and Molecular Mutagenesis, 1993, 22, 157-163.	0.9	22
48	Black patients with multiple myeloma have better survival than white patients when treated equally: a matched cohort study. Blood Cancer Journal, 2022, 12, 34.	2.8	22
49	Forkhead Box M1 Regulates Quiescence-Associated Radioresistance of Human Head and Neck Squamous Carcinoma Cells. Radiation Research, 2014, 182, 420.	0.7	21
50	Upregulation of FOXM1 leads to diminished drug sensitivity in myeloma. BMC Cancer, 2018, 18, 1152.	1.1	21
51	Moderate G6PD deficiency increases mutation rates in the brain of mice. Free Radical Biology and Medicine, 2002, 32, 663-673.	1.3	20
52	Prevalence and significance of sarcopenia in multiple myeloma patients undergoing autologous hematopoietic cell transplantation. Bone Marrow Transplantation, 2021, 56, 225-231.	1.3	17
53	FOXM1 regulates glycolysis and energy production in multiple myeloma. Oncogene, 2022, 41, 3899-3911.	2.6	16
54	In a model of immunoglobulin heavyâ€chain (<i>IGH</i>)/ <i>MYC</i> translocation, the <i>Igh</i> 3′ regulatory region induces <i>MYC</i> expression at the immature stage of B cell development. Genes Chromosomes and Cancer, 2007, 46, 950-959.	1.5	15

#	Article	lF	CITATIONS
55	Upregulation of FOXM1 in a subset of relapsed myeloma results in poor outcome. Blood Cancer Journal, 2018, 8, 22.	2.8	15
56	Assessment of oxidative DNA damage in theoxyR-deficient sos chromotest strainescherichia coli PQ300. Environmental and Molecular Mutagenesis, 1992, 20, 297-306.	0.9	14
57	Paradoxical decrease in mutant frequencies and chromosomal rearrangements in a transgenic lacZ reporter gene in Ku80 null mice deficient in DNA double strand break repair. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 529, 51-58.	0.4	14
58	CDDO-Imidazolide inhibits growth and survival of c-Myc-induced mouse B cell and plasma cell neoplasms. Molecular Cancer, 2006, 5, 22.	7.9	14
59	Coactivation of NF-κB and Notch signaling is sufficient to induce B-cell transformation and enables B-myeloid conversion. Blood, 2020, 135, 108-120.	0.6	14
60	Jumping Translocation Breakpoint Regions Lead to Amplification of Rearranged Myc. Blood, 1999, 93, 4442-4444.	0.6	13
61	Suppression of steroid 5î±-reductase type I promotes cellular apoptosis and autophagy via PI3K/Akt/mTOR pathway in multiple myeloma. Cell Death and Disease, 2021, 12, 206.	2.7	13
62	Identification of Candidate B-Lymphoma Genes by Cross-Species Gene Expression Profiling. PLoS ONE, 2013, 8, e76889.	1.1	13
63	Chromosomes 1 and 5 harbor plasmacytoma progressor genes in mice. Genes Chromosomes and Cancer, 2000, 29, 70-74.	1.5	12
64	CDKN1A and FANCD2 are potential oncotargets in Burkitt lymphoma and multiple myeloma. Experimental Hematology and Oncology, 2015, 4, 9.	2.0	12
65	Non-Hodgkin Lymphomas of Mice. Blood Cells, Molecules, and Diseases, 2001, 27, 217-222.	0.6	11
66	Autonomic nervous system control of multiple myeloma. Blood Reviews, 2021, 46, 100741.	2.8	11
67	Uncovering MYC's full oncogenic potential in the hematopoietic system. Oncogene, 2005, 24, 3541-3543.	2.6	10
68	Germline Risk Contribution to Genomic Instability in Multiple Myeloma. Frontiers in Genetics, 2019, 10, 424.	1.1	10
69	Chronic intermittent hypoxia enhances disease progression in myeloma-resistant mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R678-R686.	0.9	10
70	TRIP13 modulates protein deubiquitination and accelerates tumor development and progression of B cell malignancies. Journal of Clinical Investigation, 2021, 131, .	3.9	10
71	Translocation remodeling in the primary BALB/c plasmacytoma TEPC 3610. Genes Chromosomes and Cancer, 2001, 30, 283-291.	1.5	9
72	Gene expression profiling reveals different pathways related to Abl and other genes that cooperate with c-Myc in a model of plasma cell neoplasia. BMC Genomics, 2007, 8, 302.	1.2	9

#	Article	lF	Citations
73	WDR26 and MTF2 are therapeutic targets in multiple myeloma. Journal of Hematology and Oncology, 2021, 14, 203.	6.9	8
74	Extraosseous IL-6 transgenic mouse plasmacytoma sometimes lacksMyc-activating chromosomal translocation. Genes Chromosomes and Cancer, 2005, 43, 137-146.	1.5	7
7 5	Genetic and Environmental Cofactors of Myc Translocations in Plasma Cell Tumor Development in Mice. Journal of the National Cancer Institute Monographs, 2008, 2008, 37-40.	0.9	7
76	NIAM-Deficient Mice Are Predisposed to the Development of Proliferative Lesions including B-Cell Lymphomas. PLoS ONE, 2014, 9, e112126.	1.1	7
77	DNA sequence analysis of the genetic recombination betweenigh6 andMyc in an uncommon BALB/c plasmacytoma, TEPC 1194. Immunogenetics, 1996, 44, 151-156.	1.2	6
78	$E\hat{l}^{1}/4/S\hat{l}^{1}/4$ transposition into Myc is sometimes a precursor for T(12;15) translocation in mouse B cells. Oncogene, 2003, 22, 2842-2850.	2.6	6
79	Moderate Hypermutability of a Transgenic lacZ Reporter Gene in Myc-Dependent Inflammation-Induced Plasma Cell Tumors in Mice. Cancer Research, 2004, 64, 530-537.	0.4	6
80	Location of Myc, Igh, and Igk on Robertsonian fusion chromosomes is inconsequential for Myc translocations and plasmacy toma development in mice, but Rb(6.15)-carrying tumors prefer Igk-Myc inversions over translocations. Genes Chromosomes and Cancer, 2005, 42, 416-426.	1.5	6
81	Molecular and cytological features of the mouse B-cell lymphoma line iMycEmu-1. Molecular Cancer, 2005, 4, 40.	7.9	6
82	Global gene expression profiling in mouse plasma cell tumor precursor and bystander cells reveals potential intervention targets for plasma cell neoplasia. Blood, 2012, 119, 1018-1028.	0.6	6
83	Myeloma sleeper agent in myeloid disguise. Blood, 2019, 134, 3-4.	0.6	6
84	Association of adverse events and associated cost with efficacy for approved relapsed and/or refractory multiple myeloma regimens: A Bayesian network metaâ€analysis of phase 3 randomized controlled trials. Cancer, 2020, 126, 2791-2801.	2.0	6
85	Isotype switch-mediatedCH deletions are a recurrent feature of Myc/CH translocations in peritoneal plasmacytomas in mice. International Journal of Cancer, 2002, 101, 423-426.	2.3	5
86	A new model of LMP1–MYC interaction in B cell lymphoma. Leukemia and Lymphoma, 2014, 55, 2917-2923.	0.6	5
87	Elevated mutant frequencies in genelacl in splenic lipopolysaccharide blasts after exposure to activated phagocytesin vitro. European Journal of Immunology, 1997, 27, 2160-2164.	1.6	4
88	Overview of Mechanisms and Consequences of Chromosomal Translocation. Journal of the National Cancer Institute Monographs, 2008, 2008, 1-1.	0.9	4
89	Osteolytic disease in IL-6 and Myc dependent mouse model of human myeloma. Haematologica, 2020, 105, e111-e115.	1.7	4
90	Trends in the use of therapeutic plasma exchange in multiple myeloma. Journal of Clinical Apheresis, 2020, 35, 307-315.	0.7	4

#	Article	IF	CITATIONS
91	Bispecific CAR-T Cells Targeting Both BCMA and CD24: A Potentially Treatment Approach for Multiple Myeloma. Blood, 2021, 138, 2802-2802.	0.6	4
92	Transgenic Shuttle Vector Assays for Determining Genetic Differences in Oxidative B Cell Mutagenesis in Vivo. Methods in Enzymology, 2002, 353, 434-448.	0.4	3
93	Anaplastic plasmacytoma of mouseâ€"establishing parallels between subtypes of mouse and human plasma cell neoplasia. Journal of Pathology, 2010, 221, 242-247.	2.1	3
94	Mouse Models of Human Mature B-Cell and Plasma Cell Neoplasms. , 2008, , 179-225.		3
95	Migration of Cells With Immunoglobulin/c-myc Recombinations in Lymphoid Tissues of Mice. Blood, 1997, 89, 291-296.	0.6	3
96	Critical Role for Cap-Independent c-MYC Translation in Progression of Multiple Myeloma. Molecular Cancer Therapeutics, 2022, 21, 502-510.	1.9	3
97	Socioeconomic disadvantage contributes to ethnic disparities in multiple myeloma survival: a matched cohort study. Blood Cancer Journal, 2022, 12, .	2.8	3
98	Bcl-2 reduces mutant rates in a transgenic lacZ reporter gene in mouse pre-B lymphocytes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 522, 135-144.	0.4	2
99	Laboratory Mice – A Driving Force in Immunopathology and Immunotherapy Studies of Human Multiple Myeloma. Frontiers in Immunology, 2021, 12, 667054.	2.2	2
100	Evaluating the Antitumor Activity of MLN9708 in a Disseminated Mouse Model of Double Transgenic iMyc Ca/Bcl-XL Plasma Cell Malignancy Blood, 2009, 114, 3835-3835.	0.6	2
101	NEK2 Inhibition Enhances the Efficacy of PD-1/PD-L1 Blockade in Multiple Myeloma. Blood, 2021, 138, 2671-2671.	0.6	2
102	Completion of the DNA sequence determination of the lgh2 locus of the mouse: the 5?-IA region. Immunogenetics, 1995, 43, 101-4.	1.2	1
103	Mouse model of MYD88L265P-dependent DLBCL. Blood, 2016, 127, 2660-2661.	0.6	1
104	MYC needs MNT to drive B cells over the edge. Blood, 2020, 135, 977-978.	0.6	1
105	MLN9708 Elicits Pharmacodynamic Response in the Bone Marrow Compartment and Has Strong Antitumor Activity in a Preclinical Intraosseous Model of Plasma Cell Malignancy Blood, 2009, 114, 1834-1834.	0.6	1
106	The Novel Proteasome Inhibitor MLN9708 Demonstrates Efficacy in a Genetically-Engineered Mouse Model of DeNovo Plasma Cell Malignancy Blood, 2009, 114, 3849-3849.	0.6	1
107	FOXM1, CDK6 and Rb Dependent Drug Resistance and Senescence in Myeloma. Blood, 2016, 128, 4456-4456.	0.6	1
108	Distinct MYC thresholds in hematopoietic neoplasia. Blood, 2006, 108, 413-413.	0.6	0

#	Article	IF	CITATIONS
109	TCL1-induced germinal center B lymphomas in mice. Blood, 2006, 108, 1791-1792.	0.6	0
110	Response to Guglielmi et al., "The 3′lgH regulatory region is active at immature stages of Bâ€cell development― Genes Chromosomes and Cancer, 2008, 47, 94-94.	1.5	0
111	New wrinkle on deubiquitination in B-cell lymphoma. Blood, 2018, 132, 2529-2530.	0.6	0
112	Dkk1 Transgenic Mice for the Study of Bone Lesions in Human Multiple Myeloma Blood, 2005, 106, 2505-2505.	0.6	0
113	IL-6 and Tumor Susceptibility Alleles of Strain BALB/C Cause Phenotypic Shift of MYC-Driven Lymphomas in Mice from Diffuse Large B-Cell Lymphoma (DLBCL) to Plasmacytoma (PCT). Blood, 2008, 112, 5316-5316.	0.6	O
114	Characteristics Associated with Disparities in Survival between Hispanic and Non-Hispanic White Patients with Multiple Myeloma: A Matched Cohort Study. Blood, 2021, 138, 4091-4091.	0.6	0
115	DNA sequence analysis of the genetic recombination between Igh6 and Myc in an uncommon BALB/c plasmacytoma, TEPC 1194. Immunogenetics, 1996, 44, 151-156.	1.2	0