Zhigao Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3462683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Materials, 2018, 13, 168-174.	18.0	271
2	Caging Na ₃ V ₂ (PO ₄) ₂ F ₃ Microcubes in Crossâ€Linked Graphene Enabling Ultrafast Sodium Storage and Longâ€Term Cycling. Advanced Science, 2018, 5, 1800680.	11.2	182
3	Encapsulation of CoS <i>_x</i> Nanocrystals into N/S Coâ€Doped Honeycombâ€Like 3D Porous Carbon for Highâ€Performance Lithium Storage. Advanced Science, 2018, 5, 1800829.	11.2	172
4	Two-dimensional hybrid nanosheets of few layered MoSe ₂ on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 15302-15308.	10.3	167
5	Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte. Ceramics International, 2020, 46, 10917-10924.	4.8	146
6	Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery application. Nano Research, 2018, 11, 449-463.	10.4	108
7	Nitrogen doped hollow MoS 2 /C nanospheres as anode for long-life sodium-ion batteries. Chemical Engineering Journal, 2017, 327, 522-529.	12.7	101
8	N-doped one-dimensional carbonaceous backbones supported MoSe2 nanosheets as superior electrodes for energy storage and conversion. Chemical Engineering Journal, 2018, 334, 2190-2200.	12.7	88
9	Tellurium Surface Doping to Enhance the Structural Stability and Electrochemical Performance of Layered Ni-Rich Cathodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 40022-40033.	8.0	85
10	Modified Chestnut-Like Structure Silicon Carbon Composite as Anode Material for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 10415-10424.	6.7	84
11	Hydrogen Bondâ€Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces. Advanced Functional Materials, 2022, 32, .	14.9	82
12	Bismuth nanosheets grown on carbon fiber cloth as advanced binder-free anode for sodium-ion batteries. Electrochemistry Communications, 2017, 81, 10-13.	4.7	78
13	TiO2 nanorods grown on carbon fiber cloth as binder-free electrode for sodium-ion batteries and flexible sodium-ion capacitors. Journal of Power Sources, 2017, 363, 284-290.	7.8	67
14	Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chemical Engineering Journal, 2019, 372, 1066-1076.	12.7	67
15	Preparation and performances of the modified gel composite electrolyte for application of quasi-solid-state lithium sulfur battery. Chemical Engineering Journal, 2020, 389, 124300.	12.7	60
16	Hollow Silicon–Tin Nanospheres Encapsulated by N-Doped Carbon as Anode Materials for Lithium-Ion Batteries. ACS Applied Nano Materials, 2018, 1, 6989-6999.	5.0	51
17	The effects of dual modification on structure and performance of P2-type layered oxide cathode for sodium-ion batteries. Chemical Engineering Journal, 2020, 384, 123234.	12.7	48
18	Carbon-Coated Yttria Hollow Spheres as Both Sulfur Immobilizer and Catalyst of Polysulfides Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42104-42113.	8.0	45

Zhigao Luo

#	Article	IF	CITATIONS
19	Hierarchically structured spherical nickel cobalt layered double hydroxides particles grown on biomass porous carbon as an advanced electrode for high specific energy asymmetric supercapacitor. Journal of Energy Storage, 2020, 30, 101454.	8.1	45
20	Nanorod-Nanoflake Interconnected LiMnPO ₄ ·Li ₃ V ₂ (PO ₄) ₃ /C Composite for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 27632-27641.	8.0	44
21	Graphene oxide templated nitrogen-doped carbon nanosheets with superior rate capability for sodium ion batteries. Carbon, 2017, 122, 82-91.	10.3	43
22	Electrochemical performance and structural stability of air-stable Na0.67Ni0.33Mn0.67-xTixO2 cathode materials for high-performance sodium-ion batteries. Chemical Engineering Journal, 2020, 399, 125725.	12.7	43
23	Quasiâ€Solid Electrolyte Design and In Situ Construction of Dual Electrolyte/Electrode Interphases for Highâ€Stability Zinc Metal Battery. Advanced Energy Materials, 2022, 12, .	19.5	42
24	A tin disulfide nanosheet wrapped with interconnected carbon nanotube networks for application of lithium sulfur batteries. Electrochimica Acta, 2019, 313, 151-160.	5.2	33
25	Preparation and Performance of the Heterostructured Material with a Ni-Rich Layered Oxide Core and a LiNi _{0.5} Mn _{1.5} O ₄ -like Spinel Shell. ACS Applied Materials & Interfaces, 2019, 11, 16556-16566.	8.0	31
26	High-performance P2-Type Fe/Mn-based oxide cathode materials for sodium-ion batteries. Electrochimica Acta, 2019, 312, 45-53.	5.2	30
27	Flower-like ZnO modified with BiOI nanoparticles as adsorption/catalytic bifunctional hosts for lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 51, 21-29.	12.9	30
28	Preparation and application of poly(ethylene oxide)â€based all solidâ€state electrolyte with a walnutâ€like SiO ₂ as nanoâ€fillers. Journal of Applied Polymer Science, 2020, 137, 48810.	2.6	29
29	SnF2-based fluoride ion electrolytes MSnF4 (MÂ= Ba, Pb) for the application of room-temperature solid-state fluoride ion batteries. Journal of Alloys and Compounds, 2020, 819, 152983.	5.5	27
30	Nitrogen/sulfur co-doped hollow carbon nanofiber anode obtained from polypyrrole with enhanced electrochemical performance for Na-ion batteries. Science Bulletin, 2018, 63, 126-132.	9.0	26
31	Rapid preparation and performances of garnet electrolyte with sintering aids for solid-state Li–S battery. Ceramics International, 2021, 47, 18196-18204.	4.8	25
32	Fe, Co-bimetallic doped C3N4 with in-situ derived carbon tube as sulfur host for anchoring and catalyzing polysulfides in lithium-sulfur battery. Journal of Alloys and Compounds, 2021, 873, 159883.	5.5	21
33	Semiâ€interpenetrating gel polymer electrolyte based on <scp>PVDFâ€HFP</scp> for lithium ion batteries. Journal of Applied Polymer Science, 2021, 138, 49993.	2.6	20
34	Efficient Mutual-Compensating Li-Loss Strategy toward Highly Conductive Garnet Ceramics for Li-Metal Solid-State Batteries. ACS Applied Materials & Interfaces, 2021, 13, 56054-56063.	8.0	19
35	Double bond effects induced by iron selenide as immobilized homogenous catalyst for efficient polysulfides capture. Chemical Engineering Journal, 2021, 421, 129770.	12.7	18
36	A flexible tysonite-type La0.95Ba0.05F2.95@PEO-based composite electrolyte for the application of advanced fluoride ion battery. Journal of Energy Storage, 2019, 25, 100886.	8.1	17

Zhigao Luo

#	Article	IF	CITATIONS
37	Preparation and performances of novel Na2FeSiO4/C composite with more stable polymorph as cathode material of sodium-ion batteries. Journal of Power Sources, 2019, 430, 120-129.	7.8	17
38	High-Performance Gel Polymer Electrolyte with Self-Healing Capability for Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 5267-5276.	5.1	14
39	Heterogeneous dual-wrapped architecture of hollow SiOx/MoS2-CNTs nanohybrids as anode materials for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 842, 50-58.	3.8	13
40	Nd3+ doped BaSnF4 solid electrolyte for advanced room-temperature solid-state fluoride ion batteries. Ceramics International, 2020, 46, 20521-20528.	4.8	13
41	Polyaniline-Derived Carbon Heterostructure as Redox Mediator of Li ₂ S Oxidation and Polysulfide Immobilizer for High-Performance Lithium–Sulfur Cathode. ACS Sustainable Chemistry and Engineering, 2020, 8, 16659-16670.	6.7	11
42	Electrochemical Energy Storage Behavior of Na _{0.44} MnO ₂ in Aqueous Zinc-Ion Battery. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	11
43	Multiple Strategies toward Advanced P2-Type Layered Na _{<i>x</i>} MnO ₂ for Low-Cost Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 8183-8192.	5.1	11
44	Multiple roles of titanium carbide in performance boosting: Mediator, anchor and electrocatalyst for polysulfides redox regulation. Chemical Engineering Journal, 2021, 426, 130744.	12.7	11
45	Lithium Sulfide-Embedded Three-Dimensional Heterogeneous Micro-/Mesoporous Interwoven Carbon Architecture as the Cathode of Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 351-361.	6.7	10
46	The preparation and performances of lithium sulfide (Li2S)-oriented cathode composite via carbothermic reduction. Journal of Alloys and Compounds, 2020, 835, 155421.	5.5	9
47	Polyfurfuryl alcohol assisted synthesis of Na2FePO4F/C nanocomposites as cathode material of sodium ion batteries. Journal of Electroanalytical Chemistry, 2020, 867, 114187.	3.8	9
48	Preparation and performances of poly (ethylene oxide)-Li6PS5Cl composite polymer electrolyte for all-solid-state lithium batteries. Journal of Electroanalytical Chemistry, 2021, 900, 115739.	3.8	9
49	Performance Improvement of Li ₆ PS ₅ Cl Solid Electrolyte Modified by Poly(ethylene oxide)-Based Composite Polymer Electrolyte with ZSM-5 Molecular Sieves. ACS Applied Energy Materials, 2022, 5, 2356-2365.	5.1	9
50	Superior Na-Storage Properties of Nickel-Substituted Na2FeSiO4@C Microspheres Encapsulated with the In Situ-Synthesized Alveolation-like Carbon Matrix. ACS Applied Materials & Interfaces, 2020, 12, 34858-34872.	8.0	8
51	lonic conductivity and interfacial stability of Li6PS5Cl–Li6.5La3Zr1.5Ta0.5O12 composite electrolyte. Journal of Solid State Electrochemistry, 2021, 25, 2513-2525.	2.5	7
52	Catalytic-conversion behavior of MoS2 for polysulfides by nickel introduction and phosphorous-doping in advanced lithium-sulfur batteries. Chemical Engineering Journal, 2021, 425, 131640.	12.7	7
53	Enhancing Reaction Kinetics of Sulfur-Containing Species in Li-S Batteries by Quantum Dot-Level Tin Oxide Hydroxide Catalysts. ACS Applied Energy Materials, 2021, 4, 4935-4944.	5.1	6
54	Green and Facile Preparation of Carbon oated TiO ₂ Nanosheets for Highâ€Performance Sodiumâ€ion Batteries. Energy Technology, 2018, 6, 759-765.	3.8	5

#	Article	IF	CITATIONS
55	Titanium Glycolate Nanorods with Unsaturated Sites as Multifunctional Layers for Advanced Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 3670-3680.	5.1	5
56	Preparation and Performance of Eu ³⁺ -Doped BaSnF ₄ -Based Solid-State Electrolytes for Room-Temperature Fluoride-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 12978-12989.	6.7	5