
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3462317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cloud cavitation control for lithotripsy using high intensity focused ultrasound. Ultrasound in Medicine and Biology, 2006, 32, 1383-1397.	0.7	112
2	Sonodynamic Therapy: Advances and Challenges in Clinical Translation. Journal of Ultrasound in Medicine, 2019, 38, 567-580.	0.8	111
3	High intensity focused ultrasound lithotripsy with cavitating microbubbles. Medical and Biological Engineering and Computing, 2009, 47, 851-860.	1.6	91
4	Medical ultrasound with microbubbles. Experimental Thermal and Fluid Science, 2005, 29, 255-265.	1.5	83
5	Enhancement of Localized Heating by Ultrasonically Induced Cavitation in High Intensity Focused Ultrasound Treatment. Japanese Journal of Applied Physics, 2010, 49, 07HF21.	0.8	51
6	Behaviour of a bubble cluster in an ultrasound field. International Journal for Numerical Methods in Fluids, 2005, 47, 591-601.	0.9	50
7	Sonodynamic Therapy With Anticancer Micelles and High-Intensity Focused Ultrasound in Treatment of Canine Cancer. Frontiers in Pharmacology, 2019, 10, 545.	1.6	38
8	Measurement of regional pulse-wave velocity using spatial compound imaging of the common carotid artery in vivo. Ultrasonics, 2015, 55, 92-103.	2.1	37
9	Coagulation of Large Regions by Creating Multiple Cavitation Clouds for High Intensity Focused Ultrasound Treatment. Japanese Journal of Applied Physics, 2010, 49, 07HF22.	0.8	35
10	Ultrasonic Coagulation of Large Tissue Region by Generating Multiple Cavitation Clouds in Direction Perpendicular to Ultrasound Propagation. Japanese Journal of Applied Physics, 2011, 50, 07HF13.	0.8	31
11	Enhancement of Focused Ultrasound Treatment by Acoustically Generated Microbubbles. Japanese Journal of Applied Physics, 2013, 52, 07HA02.	0.8	30
12	Analysis of Temperature Rise Induced by High-Intensity Focused Ultrasound in Tissue-Mimicking Gel Considering Cavitation Bubbles. Japanese Journal of Applied Physics, 2013, 52, 07HF02.	0.8	30
13	Sonodynamic Therapy Based on Combined Use of Low Dose Administration of Epirubicin-Incorporating Drug Delivery System and Focused Ultrasound. Ultrasound in Medicine and Biology, 2017, 43, 2295-2301.	0.7	30
14	Optical Phase Contrast Mapping of Highly Focused Ultrasonic Fields. Japanese Journal of Applied Physics, 2013, 52, 07HF07.	0.8	29
15	Highly efficient cavitation-enhanced heating with dual-frequency ultrasound exposure in high-intensity focused ultrasound treatment. Japanese Journal of Applied Physics, 2014, 53, 07KF11.	0.8	28
16	Thermal Simulation of Cavitation-Enhanced Ultrasonic Heating Verified with Tissue-Mimicking Gel. Japanese Journal of Applied Physics, 2012, 51, 07GF27.	0.8	25
17	Focused Ultrasound and Lithotripsy. Advances in Experimental Medicine and Biology, 2016, 880, 113-129.	0.8	25
18	Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation. Applied Sciences (Switzerland), 2017, 7, 288.	1.3	25

#	Article	IF	CITATIONS
19	Monitoring of Lesion Induced by High-Intensity Focused Ultrasound Using Correlation Method Based on Block Matching. Japanese Journal of Applied Physics, 2012, 51, 07GF26.	0.8	24
20	Monitoring of high-intensity focused ultrasound lesion formation using decorrelation between high-speed ultrasonic images by parallel beamforming. Japanese Journal of Applied Physics, 2014, 53, 07KF10.	0.8	23
21	Detection of tissue coagulation by decorrelation of ultrasonic echo signals in cavitation-enhanced high-intensity focused ultrasound treatment. Journal of Therapeutic Ultrasound, 2016, 4, 15.	2.2	23
22	Basic study of intrinsic elastography: Relationship between tissue stiffness and propagation velocity of deformation induced by pulsatile flow. Japanese Journal of Applied Physics, 2015, 54, 07HF08.	0.8	22
23	Visualization of murine lymph vessels using photoacoustic imaging with contrast agents. Photoacoustics, 2018, 9, 39-48.	4.4	21
24	Staircase-Voltage Metal–Oxide–Semiconductor Field-Effect Transistor Driver Circuit for Therapeutic Ultrasound. Japanese Journal of Applied Physics, 2010, 49, 07HF02.	0.8	20
25	Effects of cavitation-enhanced heating in high-intensity focused ultrasound treatment on shear wave imaging. Japanese Journal of Applied Physics, 2015, 54, 07HF11.	0.8	20
26	Efficient generation of cavitation bubbles and reactive oxygen species using triggered high-intensity focused ultrasound sequence for sonodynamic treatment. Japanese Journal of Applied Physics, 2016, 55, 07KF24.	0.8	20
27	Cavitation-threshold Determination and Rheological-parameters Estimation of Albumin-stabilized Nanobubbles. Scientific Reports, 2018, 8, 7472.	1.6	20
28	Cavitation Inception by Dual-Frequency Excitation in High-Intensity Focused Ultrasound Treatment. Japanese Journal of Applied Physics, 2011, 50, 07HF14.	0.8	20
29	Advantage of annular focus generation by sector-vortex array in cavitation-enhanced high-intensity focused ultrasound treatment. Japanese Journal of Applied Physics, 2016, 55, 07KF19.	0.8	17
30	Feasibility of real-time treatment feedback using novel filter for eliminating therapeutic ultrasound noise with high-speed ultrasonic imaging in ultrasound-guided high-intensity focused ultrasound treatment. Japanese Journal of Applied Physics, 2016, 55, 07KC10.	0.8	17
31	Three-Dimensional Quantitative Optical Measurement of Asymmetrically Focused Ultrasound Pressure Field. Japanese Journal of Applied Physics, 2012, 51, 07GF25.	0.8	16
32	Development of Real-Time 3-D Photoacoustic Imaging System Employing Spherically Curved Array Transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1223-1233.	1.7	16
33	Quantitative Measurement of Focused Ultrasound Pressure Field Using Subtraction Shadowgraph. Japanese Journal of Applied Physics, 2011, 50, 07HC07.	0.8	16
34	High-speed observation of bubble cloud generation near a rigid wall by second-harmonic superimposed ultrasound. Journal of the Acoustical Society of America, 2013, 134, 1515-1520.	0.5	15
35	Changes in backscatter of liver tissue due to thermal coagulation induced by focused ultrasound. Journal of the Acoustical Society of America, 2013, 134, 1724-1730.	0.5	15
36	Efficient Generation of Cavitation Bubbles in Gel Phantom by Ultrasound Exposure with Negative-Followed by Positive-Peak-Pressure-Emphasized Waves. Japanese Journal of Applied Physics, 2013, 52, 07HF11.	0.8	15

#	Article	IF	CITATIONS
37	Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles. Japanese Journal of Applied Physics, 2015, 54, 07HF21.	0.8	15
38	Effect of controlled offset of focal position in cavitation-enhanced high-intensity focused ultrasound treatment. Japanese Journal of Applied Physics, 2015, 54, 07HF12.	0.8	15
39	Monitoring of Lesion Induced by High-Intensity Focused Ultrasound Using Correlation Method Based on Block Matching. Japanese Journal of Applied Physics, 2012, 51, 07GF26.	0.8	15
40	A control framework for the non-invasive ultrasound theragnostic system. , 2009, , .		14
41	Cavitation Inception by Dual-Frequency Excitation in High-Intensity Focused Ultrasound Treatment. Japanese Journal of Applied Physics, 2011, 50, 07HF14.	0.8	14
42	Quantitative measurement of focused ultrasound pressure field by background-subtracted shadowgraph using holographic diffuser as screen. Japanese Journal of Applied Physics, 2014, 53, 07KF24.	0.8	14
43	Ultrasonic Coagulation of Large Tissue Region by Generating Multiple Cavitation Clouds in Direction Perpendicular to Ultrasound Propagation. Japanese Journal of Applied Physics, 2011, 50, 07HF13.	0.8	14
44	Large Volume Coagulation Utilizing Multiple Cavitation Clouds Generated by Array Transducer Driven by 32 Channel Drive Circuits. Japanese Journal of Applied Physics, 2013, 52, 07HF10.	0.8	13
45	Elimination of therapeutic ultrasound noise from pre-beamformed RF data in ultrasound imaging for ultrasound-guided high-intensity focused ultrasound treatment. Japanese Journal of Applied Physics, 2015, 54, 07HD10.	0.8	13
46	Quantitative measurement of high intensity focused ultrasound pressure field by optical phase contrast method applying non-continuous phase unwrapping algorithm. Japanese Journal of Applied Physics, 2015, 54, 07HC09.	0.8	12
47	Prediction of thermal coagulation from the instantaneous strain distribution induced by high-intensity focused ultrasound. Japanese Journal of Applied Physics, 2017, 56, 07JF23.	0.8	12
48	Acoustic Impedance Evaluation of High-Intensity-Focused-Ultrasound Exposed Chicken Breast Muscle Using Ultrasonic Microscopy. Japanese Journal of Applied Physics, 2010, 49, 07HF04.	0.8	11
49	Effect of scanning the focus on generating cavitation bubbles and reactive oxygen species by using trigger high-intensity focused ultrasound sequence. Japanese Journal of Applied Physics, 2018, 57, 07LF25.	0.8	11
50	Thermal Simulation of Cavitation-Enhanced Ultrasonic Heating Verified with Tissue-Mimicking Gel. Japanese Journal of Applied Physics, 2012, 51, 07GF27.	0.8	11
51	Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer. Japanese Journal of Applied Physics, 2016, 55, 07KF05.	0.8	10
52	Estimation of sonodynamic treatment region with sonochemiluminescence in gel phantom. Japanese Journal of Applied Physics, 2018, 57, 07LF13.	0.8	10
53	Feed-Forward Controller for the Integrated Non-Invasive Ultrasound Diagnosis and Treatment. Journal of Robotics and Mechatronics, 2008, 20, 89-97.	0.5	10
54	Comparison between thermal strain and acoustic radiation force imaging methods for estimation of heat source distribution of high-intensity focused ultrasound. Japanese Journal of Applied Physics, 2021, 60, SDDE04.	0.8	9

#	Article	IF	CITATIONS
55	Effect of ultrasonic intensity and intervals of ultrasonic exposure on efficiency of sonochemiluminescence in gel phantom for sonodynamic therapy. Japanese Journal of Applied Physics, 2021, 60, SDDE12.	0.8	9
56	A Framework of the Non-invasive Ultrasound Theragnostic System. Lecture Notes in Computer Science, 2008, , 231-240.	1.0	9
57	Three-Dimensional Quantitative Optical Measurement of Asymmetrically Focused Ultrasound Pressure Field. Japanese Journal of Applied Physics, 2012, 51, 07GF25.	0.8	9
58	Change in acoustic impedance and sound speed of HIFU-exposed chicken breast muscle. , 2010, , .		8
59	Study on cavitation behavior during high-intensity focused ultrasound exposure by using optical and ultrasonic imaging. Japanese Journal of Applied Physics, 2016, 55, 07KF22.	0.8	8
60	Multifunctional pulse generator for high-intensity focused ultrasound system. Japanese Journal of Applied Physics, 2017, 56, 07JF21.	0.8	8
61	Selective detection of cavitation bubbles by triplet pulse sequence in high-intensity focused ultrasound treatment. Japanese Journal of Applied Physics, 2018, 57, 07LF12.	0.8	8
62	Singular value decomposition of received ultrasound signal to separate tissue, blood flow, and cavitation signals. Japanese Journal of Applied Physics, 2018, 57, 07LF04.	0.8	8
63	Blood flow imaging using singular value decomposition filter during high-intensity focused ultrasound exposure. Japanese Journal of Applied Physics, 2019, 58, SGGE15.	0.8	8
64	Investigation of feasibility of noise suppression method for cavitation-enhanced high-intensity focused ultrasound treatment. Ultrasonics, 2021, 114, 106394.	2.1	8
65	Visualization of skin morphology and microcirculation with high frequency ultrasound and dual-wavelength photoacoustic microscope. , 2019, , .		8
66	Breathing-Mode Ceramic Element for Therapeutic Array Transducer. Japanese Journal of Applied Physics, 2011, 50, 07HC02.	0.8	7
67	Quantitative Measurement of Focused Ultrasound Pressure Field Using Subtraction Shadowgraph. Japanese Journal of Applied Physics, 2011, 50, 07HC07.	0.8	7
68	Improvement of high-voltage staircase drive circuit waveform for high-intensity therapeutic ultrasound. Japanese Journal of Applied Physics, 2016, 55, 07KF17.	0.8	7
69	Basic study on ultrasonic monitoring using 1.5-dimensional ultrasound phased array for ultrasound-guided high-intensity focused ultrasound treatment. Japanese Journal of Applied Physics, 2017, 56, 07JF22.	0.8	7
70	Basic study of improvement of axial resolution and suppression of time side lobe by phase-corrected Wiener filtering in photoacoustic tomography. Japanese Journal of Applied Physics, 2018, 57, 07LD11.	0.8	7
71	Ultrasound imaging of cavitation using triplet pulse sequence in bubble-enhanced ultrasonic heating. Japanese Journal of Applied Physics, 2020, 59, SKKE05.	0.8	7
72	Effect of shear wave propagation on estimation of heating distribution by high-intensity focused ultrasound using acoustic radiation force imaging. Japanese Journal of Applied Physics, 2020, 59, SKKE19.	0.8	7

#	Article	IF	CITATIONS
73	Effects from correction of speed of sound in transmit and receive beamforming using focus beam. Japanese Journal of Applied Physics, 2021, 60, SDDE19.	0.8	7
74	Nonlinear ultrasound propagation in a spherical bubble cloud. , 0, , .		6
75	Ultrasound-based visual servoing system for lithotripsy. , 2007, , .		6
76	Acceleration of lithotripsy using cavitation bubbles induced by second-harmonic superimposition. Japanese Journal of Applied Physics, 2016, 55, 07KF18.	0.8	6
77	Quantitative measurement of ultrasound pressure field by optical phase contrast method and acoustic holography. Japanese Journal of Applied Physics, 2016, 55, 07KB09.	0.8	6
78	Quantitative measurement of ultrasonic pressure field using combination of optical phase contrast and nonlinear acoustic holography methods. Japanese Journal of Applied Physics, 2018, 57, 07LB13.	0.8	6
79	Experimental investigation of effect of ultrasonic duty cycle on generation of reactive oxygen species for highly efficient sonodynamic treatment. Japanese Journal of Applied Physics, 2020, 59, SKKE08.	0.8	6
80	Simulation of optical propagation based on wave optics for phase retrieval in shadowgraph of ultrasonic field. Japanese Journal of Applied Physics, 2017, 56, 07JC13.	0.8	5
81	Ultrasound Sub-pixel Motion-tracking Method with Out-of-plane Motion Detection for Precise Vascular Imaging. Ultrasound in Medicine and Biology, 2020, 46, 782-795.	0.7	5
82	Analysis of High-Intensity Focused Ultrasound Source Using Time Reversal: Effect of Lamb-Like Waves. Japanese Journal of Applied Physics, 2011, 50, 047301.	0.8	5
83	Study on heavy matching layer transducer towards producing second harmonics. Japanese Journal of Applied Physics, 2016, 55, 07KF15.	0.8	4
84	Simultaneous observation of cavitation bubbles generated in biological tissue by high-speed optical and acoustic imaging methods. Japanese Journal of Applied Physics, 2017, 56, 07JF27.	0.8	4
85	Effect of inter-focal distance and interval time in focus scanning of high-intensity focused ultrasound on efficiency of reactive oxygen generation. Japanese Journal of Applied Physics, 2019, 58, SGGE04.	0.8	4
86	Effect of focal spot scanning method in agarose gel and chicken breast on heating efficiency in cavitation-enhanced ultrasonic heating. Japanese Journal of Applied Physics, 2021, 60, SDDE13.	0.8	4
87	High Voltage Staircase Drive Circuit for Triggered High-Intensity Focused Ultrasound Treatment. Japanese Journal of Applied Physics, 2012, 51, 07GF23.	0.8	4
88	Renal Stone Comminution Utilizing Cloud Cavitation Erosion (1st Report, The Control of Cloud) Tj ETQq0 0 0 rgB Engineers Series B B-hen, 2004, 70, 904-911.	T /Overloc 0.2	ck 10 Tf 50 1 3
89	Growth of an Oscillating Microbubble in an Ultrasound Field : Enhancement of Rectified Diffusion with a Dual-Frequency Excitation Method(Fluids Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 710-717.	0.2	3
90	Therapeutic Array Transducer Element Using Coresonance between Hemispherical Piezoceramic Shell and Water Sphere: Effect of Load Masses of Support and Electric Contact. Japanese Journal of Applied Physics, 2012, 51, 07GF24.	0.8	3

#	Article	IF	CITATIONS
91	Effects of rose bengal on cavitation generation in gel phantom investigated using high-speed camera. Japanese Journal of Applied Physics, 2014, 53, 07KF20.	0.8	3
92	Quantitative Measurement of Highly Focused Ultrasound Pressure Field by Optical Shadowgraph. Journal of Physics: Conference Series, 2014, 520, 012026.	0.3	3
93	Control of treatment size in cavitation-enhanced high-intensity focused ultrasound using radio-frequency echo signals. Japanese Journal of Applied Physics, 2017, 56, 07JF28.	0.8	3
94	Effect of difference in shear modulus of biological tissue on heat source distribution of high-intensity focused ultrasound estimated by acoustic radiation force imaging. Japanese Journal of Applied Physics, 2021, 60, SDDE23.	0.8	3
95	Therapeutic Array Transducer Element Using Coresonance between Hemispherical Piezoceramic Shell and Water Sphere: Effect of Load Masses of Support and Electric Contact. Japanese Journal of Applied Physics, 2012, 51, 07GF24.	0.8	3
96	Quantitative analysis of heat-source estimation of high-intensity focused ultrasound using thermal strain imaging. Japanese Journal of Applied Physics, 2022, 61, SG1062.	0.8	3
97	The Influence of the Insonation Conditions of Pulsed Ultrasound on Microbubble Volumetric Oscillations (On the Mechanical Index and the Oscillation Characteristics). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2011, 77, 264-273.	0.2	2
98	High Voltage Staircase Drive Circuit for Triggered High-Intensity Focused Ultrasound Treatment. Japanese Journal of Applied Physics, 2012, 51, 07GF23.	0.8	2
99	Enhancement of cavitation inception by second-harmonic superimposition. , 2012, , .		2
100	A Study of the driving circuit for array transducer considering its impedance properties. , 2015, , .		2
101	Effect of annular focusing of ultrasound on rate of stone erosion using cavitation bubbles. Japanese Journal of Applied Physics, 2018, 57, 07LB18.	0.8	2
102	Evaluation of Second-generation HIFU Systems: Less-invasive Fetal Therapy for TRAP Sequence. The Showa University Journal of Medical Sciences, 2017, 29, 241-251.	0.1	2
103	Breathing-Mode Ceramic Element for Therapeutic Array Transducer. Japanese Journal of Applied Physics, 2011, 50, 07HC02.	0.8	2
104	Nonlinear Behavior of the Collapse of a Spherical Bubble Cloud. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2006, 72, 620-627.	0.2	1
105	Analysis of High-Intensity Focused Ultrasound Source Using Time Reversal: Effect of Lamb-Like Waves. Japanese Journal of Applied Physics, 2011, 50, 047301.	0.8	1
106	Optimization of phase shift of the transducer for high intensity focused ultrasound (HIFU). , 2012, , .		1
107	Influences of liquid viscosity and surface tension on the theoretical threshold value of the mechanical index. Transactions of the JSME (in Japanese), 2015, 81, 15-00517-15-00517.	0.1	1
108	Study of ultrasound transducer which produces second harmonic superimposed signal. , 2015, , .		1

#	Article	IF	CITATIONS
109	Notice of Removal: Visualization of the microcirculation in micro vasculatures by photoacoustic tomography with high frequency spherical array transducer. , 2017, , .		1
110	Development of a High-intensity Focused Ultrasound Exposure Device for Reducing Skin Burn Risk. The Showa University Journal of Medical Sciences, 2020, 32, 1-9.	0.1	1
111	Analysis of tissue displacement induced by high-intensity focused ultrasound exposure for coagulation monitoring. Japanese Journal of Applied Physics, 2021, 60, 040903.	0.8	1
112	Investigation on Ultrasonic Exposure Sequence by Luminol Sonochemiluminescence for Highly Effective Sonodynamic Treatment. , 2020, , .		1
113	CHANGE IN ACOUSTIC IMPEDANCE AND SOUND SPEED OF EXCISED CHICKEN BREAST MUSCLE BY HIGH-INTENSITYFOCUSED ULTRASOUND (HIFU) EXPOSURE. , 2012, , .		1
114	Effects of intermittent duration of ultrasound exposure on temperature rise and behavior of cavitation bubbles in bubble-enhanced ultrasonic heating. Acoustical Science and Technology, 2020, 41, 913-916.	0.3	1
115	Displacement detection with sub-pixel accuracy and high spatial resolution using deep learning. Journal of Medical Ultrasonics (2001), 2022, 49, 3-15.	0.6	1
116	High-speed Observation of Two-frequency Controlled Cloud Cavitation in HIFU Field. AIP Conference Proceedings, 2005, , .	0.3	0
117	The Design Of Microbubbles Specialized For Therapeutic Or Diagnostic Use. AlP Conference Proceedings, 2005, , .	0.3	0
118	Numerical Study Of The Heat Transfer From An Oscillating Bubble. AIP Conference Proceedings, 2005, ,	0.3	0
119	Characterization of the HIFU-induced cloud cavitation for the optimization of high pressure concentration for lithotripsy. AIP Conference Proceedings, 2006, , .	0.3	Ο
120	Development of a Non-Invasive Ultrasound Therapy System. , 2007, , .		0
121	Nonlinear Phenomena of Acoustic Cloud Cavitation. AIP Conference Proceedings, 2008, , .	0.3	0
122	Cavitation detection with subharmonic emissions by low intensity sustaining ultrasound. , 2008, , .		0
123	Enhancement of ultrasonic heating with microbubbles and their localization in target tissue. , 2009, ,		Ο
124	Development of HIFU treatment in which the heating location is controlled using microbubbles. , 2009, , .		0
125	Staircase-wave drive circuit to drive therapeutic array transducer. , 2010, , .		0
126	Effects of leaky Lamb-like wave propagation in single-element high intensity focused ultrasound transducer by vibration analysis. , 2010, , .		0

8

#	Article	IF	CITATIONS
127	Enhancement of ultrasonic heating by ultrasonically localized cavitation for high intensity focused ultrasound treatment. , 2010, , .		Ο
128	Novel concept of array transducer element using combined resonance between oscillations of hemispherical piezoceramic shell and bulk water. , 2011, , .		0
129	Minimally invasive intracardiac intervention using high intensity focused ultrasound. AIP Conference Proceedings, 2011, , .	0.3	0
130	Effects of Lamb Waves in a Single-Element High Intensity Focused Ultrasound Transducer. , 2011, , .		0
131	Gel phantom containing controlled air to test Triggered HIFU exposure sequence. , 2011, , .		Ο
132	High-throughput coagulation by heating with laterally enlarged focus, enhanced by mircobubble clouds created by electronically scanned trigger pulses. , 2011, , .		0
133	Detection of HIFU-induced coagulation by motion-compensated decorrelation of RF echo signals. , 2012, , .		Ο
134	Efficient generation of cavitation cloud by dual-frequency ultrasound exposure in optically transparent gel. , 2012, , .		0
135	Measurement of propagation wave velocity of thyroid induced by pulsation. , 2014, , .		Ο
136	Quantitative assessment of reactive oxygen species generation by cavitation incepted efficiently using nonlinear propagation effect. AIP Conference Proceedings, 2015, , .	0.3	0
137	Efficient generation of reactive oxygen species sonochemically generated by cavitation bubbles. , 2015, , .		Ο
138	Intrinsic elastography and its dependence on arterial flow volume. , 2015, 2015, 6309-12.		0
139	Quantitative measurement of pulsed ultrasound pressure field using optical phase contrast. , 2015, , .		Ο
140	Monitoring of lesions induced by cavitation-enhanced high-intensity focused ultrasound using shear wave elastography. , 2015, , .		0
141	Differentiation of vein and lymphatic vessel by photoacoustic imaging system with parabolic array transducer and tunable laser. , 2017, , .		Ο
142	Notice of Removal: Basic study on ultrasonic tissue monitoring using 1.5-dimensional ultrasound phased array for ultrasound-guided high intensity focused ultrasound treatment. , 2017, , .		0
143	Notice of Removal: Three dimensional pressure field measurement of focused ultrasound by optical phase contrast method. , 2017, , .		0
144	Notice of Removal: Prediction of thermal coagulation by short-pulse pre-exposure for cavitation-enhanced ultrasonic heating. , 2017, , .		0

#	Article	IF	CITATIONS
145	Effect of focal shape control on stone erosion rate using cavitation bubbles. Proceedings of Meetings on Acoustics, 2017, , .	0.3	0
146	Differentiation of vein and lymphatic vessel by photoacoustic imaging system with parabolic array transducer and tunable laser. , 2017, , .		0
147	Study on ultrasound sequence with scanning the focus to generate reactive oxygen species efficiently for sonodynamic therapy. Proceedings of Meetings on Acoustics, 2017, , .	0.3	0
148	A dimensionless index and dimensionless parameters in terms of ultrasound insonation and micro-bubble nonlinear resonance. Transactions of the JSME (in Japanese), 2019, 85, 19-00152-19-00152.	0.1	0
149	Effect of alternate transmission of split apertures on bubble behavior and temperature rise for bubble-enhanced ultrasound treatment. , 2020, , .		0
150	Experimental Investigation of Relationship between Coagulation Size and Estimated Distribution of HIFU Heat Source from Displacement Distribution by Acoustic Radiation Force Imaging. , 2020, , .		0
151	Real-Time Imaging of the Process of Stone Crushing by Ultrasound. AIP Conference Proceedings, 2007, ,	0.3	0
152	Effects of Lamb Wave in Therapeutic Ultrasound Transducer by Vibration Analysis. IFMBE Proceedings, 2010, , 1640-1643.	0.2	0
153	Acoustic Impedance Evaluation of Thermally Denatured and Non-denatured Biological Tissues. IFMBE Proceedings, 2010, , 1629-1632.	0.2	0
154	VIBRATIONAL ANALYSIS OF SINGLE-ELEMENT HIGH INTENSITY FOCUSED ULTRASOUND TRANSDUCER. , 2012, , .		0
155	2B21 Quantitative Measurement of High-Intensity Focused Ultrasound Pressure Field by Optical Phase Contrast. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 303-304.	0.0	0
156	Effect of split-aperture transmission on cavitation bubbles and ultrasonic heating outside focal region in high-intensity focused ultrasound exposure. Acoustical Science and Technology, 2020, 41, 909-912.	0.3	0