Hidde de Jong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3461602/publications.pdf

Version: 2024-02-01

73 5,382 30 papers citations h-index

80 80 80 4396
all docs docs citations times ranked citing authors

68

g-index

#	Article	IF	CITATIONS
1	Dynamical Analysis and Optimization of a Generalized Resource Allocation Model of Microbial Growth. SIAM Journal on Applied Dynamical Systems, 2022, 21, 137-165.	1.6	3
2	Optimal proteome allocation and the temperature dependence of microbial growth laws. Npj Systems Biology and Applications, 2021, 7, 14.	3.0	14
3	Qualitative Modeling, Analysis and Control of Synthetic Regulatory Circuits. Methods in Molecular Biology, 2021, 2229, 1-40.	0.9	3
4	Multiomics Study of Bacterial Growth Arrest in a Synthetic Biology Application. ACS Synthetic Biology, 2021, 10, 2910-2926.	3.8	4
5	Enhanced production of heterologous proteins by a synthetic microbial community: Conditions and trade-offs. PLoS Computational Biology, 2020, 16, e1007795.	3.2	20
6	<scp>SBML</scp> Level 3: an extensible format for the exchange and reuse of biological models. Molecular Systems Biology, 2020, 16, e9110.	7.2	178
7	WellInverter: a web application for the analysis of fluorescent reporter gene data. BMC Bioinformatics, 2019, 20, 309.	2.6	6
8	Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate. Journal of Bacteriology, 2019, 201, .	2.2	137
9	Optimal control of bacterial growth for the maximization of metabolite production. Journal of Mathematical Biology, 2019, 78, 985-1032.	1.9	20
10	An ensemble of mathematical models showing diauxic growth behaviour. BMC Systems Biology, 2018, 12, 82.	3.0	16
11	Resource Reallocation in Bacteria by Reengineering the Gene Expression Machinery. Trends in Microbiology, 2017, 25, 480-493.	7.7	19
12	Mathematical modelling of microbes: metabolism, gene expression and growth. Journal of the Royal Society Interface, 2017, 14, 20170502.	3.4	46
13	Estimation of time-varying growth, uptake and excretion rates from dynamic metabolomics data. Bioinformatics, 2017, 33, i301-i310.	4.1	15
14	Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies. PLoS Computational Biology, 2016, 12, e1004802.	3.2	84
15	A synthetic growth switch based on controlled expression of RNA polymerase. Molecular Systems Biology, 2015, 11, 840.	7.2	76
16	Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends in Microbiology, 2015, 23, 99-109.	7.7	112
17	Inference of Quantitative Models of Bacterial Promoters from Time-Series Reporter Gene Data. PLoS Computational Biology, 2015, 11, e1004028.	3.2	38
18	Robust reconstruction of gene expression profiles from reporter gene data using linear inversion. Bioinformatics, 2015, 31, i71-i79.	4.1	17

#	Article	IF	CITATIONS
19	Fluorescent Reporter Genes and the Analysis of Bacterial Regulatory Networks. Lecture Notes in Computer Science, 2015, , 27-50.	1.3	1
20	Numerical simulation of piecewise-linear models of gene regulatory networks using complementarity systems. Physica D: Nonlinear Phenomena, 2014, 269, 103-119.	2.8	32
21	Mass Spectrometry-based Workflow for Accurate Quantification of Escherichia coli Enzymes: How Proteomics Can Play a Key Role in Metabolic Engineering. Molecular and Cellular Proteomics, 2014, 13, 954-968.	3.8	14
22	SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools. BMC Systems Biology, 2013, 7, 135.	3.0	145
23	On the identifiability of metabolic network models. Journal of Mathematical Biology, 2013, 67, 1795-1832.	1.9	27
24	Shared control of gene expression in bacteria by transcription factors and global physiology of the cell. Molecular Systems Biology, 2013, 9, 634.	7.2	127
25	A genome-wide screen for identifying all regulators of a target gene. Nucleic Acids Research, 2013, 41, e164-e164.	14.5	12
26	Structural and practical identifiability of approximate metabolic network models. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 1719-1724.	0.4	1
27	Towards multiscale plant models: integrating cellular networks. Trends in Plant Science, 2012, 17, 728-736.	8.8	44
28	Importance of metabolic coupling for the dynamics of gene expression following a diauxic shift in Escherichia coli. Journal of Theoretical Biology, 2012, 295, 100-115.	1.7	16
29	Genetic Network Analyzer: A Tool for the Qualitative Modeling and Simulation of Bacterial Regulatory Networks. Methods in Molecular Biology, 2012, 804, 439-462.	0.9	31
30	Model Reduction Using Piecewise-Linear Approximations Preserves Dynamic Properties of the Carbon Starvation Response in Escherichia coli. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 166-181.	3.0	20
31	Identification of metabolic network models from incomplete high-throughput datasets. Bioinformatics, 2011, 27, i186-i195.	4.1	20
32	Importance of Metabolic Coupling for the Dynamics of Gene Expression Following a Diauxic Shift in E. coli. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 14851-14856.	0.4	0
33	The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene. BMC Systems Biology, 2011, 5, 191.	3.0	32
34	CTRL: Extension of CTL with regular expressions and fairness operators to verify genetic regulatory networks. Theoretical Computer Science, 2011, 412, 2854-2883.	0.9	18
35	Qualitative Analysis of Genetic Regulatory Networks in Bacteria. , 2011, , 111-130.		4
36	Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria. BMC Systems Biology, 2010, 4, 55.	3.0	78

#	Article	IF	Citations
37	Efficient parameter search for qualitative models of regulatory networks using symbolic model checking. Bioinformatics, 2010, 26, i603-i610.	4.1	49
38	WellReader: a MATLAB program for the analysis of fluorescence and luminescence reporter gene data. Bioinformatics, 2010, 26, 1262-1263.	4.1	12
39	The Carbon Assimilation Network in Escherichia coli Is Densely Connected and Largely Sign-Determined by Directions of Metabolic Fluxes. PLoS Computational Biology, 2010, 6, e1000812.	3.2	46
40	Modeling and formal verification of biological regulatory networks: An integrative approach. , 2010, , .		0
41	A service-oriented architecture for integrating the modeling and formal verification of genetic regulatory networks. BMC Bioinformatics, 2009, 10, 450.	2.6	11
42	Reduction of a Kinetic Model of the Carbon Starvation Response in Escherichia coli. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 27-32.	0.4	0
43	Identification of parameters and structure of piecewise affine models of genetic networks. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 587-592.	0.4	2
44	Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica, 2008, 44, 982-989.	5.0	46
45	Structural Identification of Piecewise-Linear Models of Genetic Regulatory Networks. Journal of Computational Biology, 2008, 15, 1365-1380.	1.6	37
46	The Switching Threshold Reconstruction Problem for Piecewise-Affine Models of Genetic Regulatory Networks. IEEE Transactions on Automatic Control, 2008, 53, 153-165.	5.7	37
47	Search for Steady States of Piecewise-Linear Differential Equation Models of Genetic Regulatory Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008, 5, 208-222.	3.0	47
48	Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics, 2008, 24, i227-i233.	4.1	68
49	Computation Tree Regular Logic for Genetic Regulatory Networks. Lecture Notes in Computer Science, 2008, , 48-63.	1.3	9
50	Qualitative Modeling and Simulation of Bacterial Regulatory Networks. Lecture Notes in Computer Science, 2008, , 1-1.	1.3	1
51	Piecewise-Linear Models of Genetic Regulatory Networks: Theory and Example. Lecture Notes in Control and Information Sciences, 2007, , 137-159.	1.0	15
52	Qualitative simulation of the carbon starvation response in Escherichia coli. BioSystems, 2006, 84, 124-152.	2.0	106
53	Experiment selection for the discrimination of semi-quantitative models of dynamical systems. Artificial Intelligence, 2006, 170, 472-506.	5.8	67
54	Dynamical modeling of biological regulatory networks. BioSystems, 2006, 84, 77-80.	2.0	16

#	Article	IF	CITATIONS
55	Piecewise-linear Models of Genetic Regulatory Networks: Equilibria and their Stability. Journal of Mathematical Biology, 2006, 52, 27-56.	1.9	157
56	Strategies for dealing with incomplete information in the modeling of molecular interaction networks. Briefings in Bioinformatics, 2006, 7, 354-363.	6.5	23
57	Course 10Modeling, analysis, and simulation of genetic regulatory networks: From differential equations to logical models. Les Houches Summer School Proceedings, 2005, , 325-354.	0.2	O
58	Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli. Bioinformatics, 2005, 21, i19-i28.	4.1	141
59	Control of Bacteriophage Mu Lysogenic Repression. Journal of Molecular Biology, 2005, 353, 186-195.	4.2	29
60	Qualitative Analysis and Verification of Hybrid Models of Genetic Regulatory Networks: Nutritional Stress Response in Escherichia coli. Lecture Notes in Computer Science, 2005, , 134-150.	1.3	25
61	A multi-scale constraint programming model of alternative splicing regulation. Theoretical Computer Science, 2004, 325, 3-24.	0.9	7
62	Qualitative simulation of the initiation of sporulation in. Bulletin of Mathematical Biology, 2004, 66, 261-299.	1.9	81
63	Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology, 2004, 66, 301-340.	1.9	309
64	Qualitative simulation and related approaches for the analysis of dynamic systems. Knowledge Engineering Review, 2004, 19, 93-132.	2.6	11
65	Model Checking Genetic Regulatory Networks Using GNA and CADP. Lecture Notes in Computer Science, 2004, , 158-163.	1.3	18
66	Genetic Network Analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics, 2003, 19, 336-344.	4.1	240
67	Hybrid Modeling and Simulation of Genetic Regulatory Networks: A Qualitative Approach. Lecture Notes in Computer Science, 2003, , 267-282.	1.3	32
68	Qualitative modelling and simulation of developmental regulatory networks., 2003,, 109-134.		5
69	Modélisation, analyse et simulationdes réseaux génétiques. Medecine/Sciences, 2002, 18, 492-502.	0.2	2
70	Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computational Biology, 2002, 9, 67-103.	1.6	2,250
71	Comparative envisionment construction: A technique for the comparative analysis of dynamical systems. Artificial Intelligence, 1999, 115, 145-214.	5.8	5
72	Computer-Supported Resolution of Measurement Conflicts: A Case-Study in Materials Science. Foundations of Science, 1999, 4, 427-461.	0.7	4

#	Article	IF	CITATIONS
73	The computer revolution in science: steps towards the realization of computer-supported discovery environments. Artificial Intelligence, 1997, 91, 225-256.	5.8	38