
Danilo Porro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/346154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial production of organic acids: expanding the markets. Trends in Biotechnology, 2008, 26, 100-108.	4.9	680
2	Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. European Journal of Cancer, 2007, 43, 935-946.	1.3	523
3	Replacement of a Metabolic Pathway for Large-Scale Production of Lactic Acid from Engineered Yeasts. Applied and Environmental Microbiology, 1999, 65, 4211-4215.	1.4	378
4	Homofermentative Lactate Production Cannot Sustain Anaerobic Growth of Engineered Saccharomyces cerevisiae : Possible Consequence of Energy-Dependent Lactate Export. Applied and Environmental Microbiology, 2004, 70, 2898-2905.	1.4	365
5	Improvement of Lactic Acid Production in Saccharomyces cerevisiae by Cell Sorting for High Intracellular pH. Applied and Environmental Microbiology, 2006, 72, 5492-5499.	1.4	351
6	Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microbial Cell Factories, 2008, 7, 11.	1.9	269
7	Recombinant Protein Production in Yeasts. Methods in Molecular Biology, 2012, 824, 329-358.	0.4	245
8	Recombinant Protein Production in Yeasts. Molecular Biotechnology, 2005, 31, 245-260.	1.3	152
9	Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnology Progress, 1995, 11, 294-298.	1.3	114
10	16 years research on lactic acid production with yeast – ready for the market?. Biotechnology and Genetic Engineering Reviews, 2010, 27, 229-256.	2.4	114
11	Oscillations in continuous cultures of budding yeast: A segregated parameter analysis. Biotechnology and Bioengineering, 1988, 32, 411-417.	1.7	111
12	Intracellular pH Distribution in Saccharomyces cerevisiae Cell Populations, Analyzed by Flow Cytometry. Applied and Environmental Microbiology, 2005, 71, 1515-1521.	1.4	94
13	Production of recombinant proteins and metabolites in yeasts. Applied Microbiology and Biotechnology, 2011, 89, 939-948.	1.7	90
14	A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2013, 6, 68.	6.2	85
15	Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export. Microbial Cell Factories, 2006, 5, 4.	1.9	84
16	Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch. PLoS Biology, 2017, 15, e2002128.	2.6	84
17	Efficient Homolactic Fermentation by Kluyveromyces lactis Strains Defective in Pyruvate Utilization and Transformed with the Heterologous LDH Gene. Applied and Environmental Microbiology, 2001, 67, 5621-5625.	1.4	82
18	Biosynthesis of Vitamin C by Yeast Leads to Increased Stress Resistance. PLoS ONE, 2007, 2, e1092.	1.1	78

#	Article	IF	CITATIONS
19	Production of l -Ascorbic Acid by Metabolically Engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Applied and Environmental Microbiology, 2004, 70, 6086-6091.	1.4	74
20	Fourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts. Biotechnology for Biofuels, 2014, 7, 12.	6.2	73
21	Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast. Biotechnology and Bioengineering, 1990, 36, 453-459.	1.7	70
22	A Mutation in a Novel Yeast Proteasomal Gene, <i>RPN11/MPR1</i> , Produces a Cell Cycle Arrest, Overreplication of Nuclear and Mitochondrial DNA, and an Altered Mitochondrial Morphology. Molecular Biology of the Cell, 1998, 9, 2917-2931.	0.9	67
23	Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts. Microbial Cell Factories, 2016, 15, 75.	1.9	63
24	Lactose/whey utilization and ethanol production by transformedSaccharomyces cerevisiae cells. Biotechnology and Bioengineering, 1992, 39, 799-805.	1.7	61
25	Differential gene expression in recombinant Pichia pastoris analysed by heterologous DNA microarray hybridisation. Microbial Cell Factories, 2004, 3, 17.	1.9	55
26	The yeast : a new host for heterologous protein production, secretion and for metabolic engineering applications. FEMS Yeast Research, 2004, 4, 493-504.	1.1	53
27	Quantative flow cytometry: Analysis of protein distributions in budding yeast. A mini-review. Yeast, 1993, 9, 815-823.	0.8	49
28	Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis. Microbiology (United Kingdom), 2008, 154, 1686-1699.	0.7	48
29	Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain. Microbial Cell Factories, 2014, 13, 51.	1.9	48
30	Glucose metabolism and cell size in continuous cultures ofSaccharomyces cerevisiae. FEMS Microbiology Letters, 2003, 229, 165-171.	0.7	47
31	Alterations of the glucose metabolism in a triose phosphate isomerase-negativeSaccharomyces cerevisiae mutant. Yeast, 2001, 18, 663-670.	0.8	46
32	Influence of growth temperature on the production of antibody Fab fragments in different microbes: A host comparative analysis. Biotechnology Progress, 2011, 27, 38-46.	1.3	46
33	Control by Nutrients of Growth and Cell Cycle Progression in Budding Yeast, Analyzed by Double-Tag Flow Cytometry. Journal of Bacteriology, 1998, 180, 3864-3872.	1.0	45
34	Deletion or Overexpression of Mitochondrial NAD ⁺ Carriers in <i>Saccharomyces cerevisiae</i> Alters Cellular NAD and ATP Contents and Affects Mitochondrial Metabolism and the Rate of Glycolysis. Applied and Environmental Microbiology, 2011, 77, 2239-2246.	1.4	42
35	Mutations of the CK2 phosphorylation site of Sic1 affect cell size and S-Cdk kinase activity in Saccharomyces cerevisiae. Molecular Microbiology, 2004, 51, 447-460.	1.2	41
36	The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris - a comparative analysis. BMC Genomics, 2011, 12, 218.	1.2	40

#	Article	IF	CITATIONS
37	Improved Secretion of Native Human Insulin-Like Growth Factor 1 from gas1 Mutant Saccharomyces cerevisiae Cells. Applied and Environmental Microbiology, 2000, 66, 5477-5479.	1.4	38
38	Towards understanding of the complex structure of growing yeast populations. Journal of Biotechnology, 2007, 128, 393-402.	1.9	38
39	Analysis and modeling of growing budding yeast populations at the single cell level. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 114-120.	1.1	37
40	Microbial <i>n</i> â€butanol production from <scp>C</scp> lostridia to nonâ€Clostridial hosts. Engineering in Life Sciences, 2014, 14, 16-26.	2.0	37
41	Cloning, disruption and protein secretory phenotype of theGAS1homologue ofPichia pastoris. FEMS Microbiology Letters, 2006, 264, 40-47.	0.7	35
42	The spoilage yeast <i>Zygosaccharomyces bailii</i> : Foe or friend?. Yeast, 2017, 34, 359-370.	0.8	33
43	Morphologically-structured models of growing budding yeast populations. Journal of Biotechnology, 2006, 124, 420-438.	1.9	32
44	InSaccharomyces cerevisiae, protein secretion into the growth medium depends on environmental factors. Yeast, 1993, 9, 77-84.	0.8	31
45	Protein aggregation and membrane lipid modifications under lactic acid stress in wild type and OPI1 deleted Saccharomyces cerevisiae strains. Microbial Cell Factories, 2016, 15, 39.	1.9	31
46	SFP1 is involved in cell size modulation in respiro-fermentative growth conditions. Yeast, 2005, 22, 385-399.	0.8	30
47	Induction by Hypoxia of Heterologous-Protein Production with the Kl PDC1 Promoter in Yeasts. Applied and Environmental Microbiology, 2007, 73, 922-929.	1.4	30
48	A double flow cytometric tag allows tracking of the dynamics of cell cycle progression of newbornSaccharomyces cerevisiae cells during balanced exponential growth. Yeast, 1995, 11, 1157-1169.	0.8	29
49	Effect of HXT 1 and HXT 7 hexose transporter overexpression on wild-type and lactic acid producing Saccharomyces cerevisiae cells. Microbial Cell Factories, 2010, 9, 15.	1.9	29
50	Metabolically Engineered Yeasts: â€~Potential' Industrial Applications. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 31-40.	1.0	28
51	Alteration of cell population structure due to cell lysis inSaccharomyces cerevisiae cells overexpressing theGAL4 gene. Yeast, 1993, 9, 575-582.	0.8	27
52	Different response to acetic acid stress in <i>Saccharomyces cerevisiae</i> wildâ€ŧype and <scp>l</scp> â€ascorbic acidâ€producing strains. Yeast, 2013, 30, 365-378.	0.8	27
53	Reverse engineering of protein secretion by uncoupling of cell cycle phases from growth. Biotechnology and Bioengineering, 2011, 108, 2403-2412.	1.7	26
54	Old obstacles and new horizons for microbial chemical production. Current Opinion in Biotechnology, 2014, 30, 101-106.	3.3	25

#	Article	IF	CITATIONS
55	The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi. FEMS Microbiology Letters, 2017, 364, .	0.7	25
56	Microbial desulfurization of ground tire rubber (GTR): Characterization of microbial communities and rheological and mechanical properties of GTR and natural rubber composites (GTR/NR). Polymer Degradation and Stability, 2019, 160, 102-109.	2.7	25
57	Flow-cytometric determination of the respiratory activity in growing Saccharomyces cerevisiae populations. Biotechnology Progress, 1994, 10, 193-197.	1.3	24
58	Tracking of individual cell cohorts in asynchronous Saccharomyces cerevisiae populations. Biotechnology Progress, 1995, 11, 342-347.	1.3	24
59	In budding yeast, reactive oxygen species induce both RAS-dependent and RAS-independent cell cycle-specific arrest. Molecular Microbiology, 1999, 32, 753-764.	1.2	23
60	Towards a blueprint of the cell cycle. Oncogene, 2001, 20, 1128-1134.	2.6	22
61	Heterologous protein production in : physiological effects and fermentative strategies. FEMS Yeast Research, 2005, 5, 647-652.	1.1	21
62	Advances in molecular tools for the use of Zygosaccharomyces bailii as host for biotechnological productions and construction of â€∫the first auxotrophic mutant. FEMS Yeast Research, 2010, 10, 894-908.	1.1	21
63	Optimization of construct design and fermentation strategy for the production of bioactive ATF-SAP, a saporin based anti-tumoral uPAR-targeted chimera. Microbial Cell Factories, 2016, 15, 194.	1.9	21
64	Secretion of Escherichia coli β-galactosidase in Saccharomyces cerevisiae using the signal sequence from the glucoamylase-encoding STA2 gene. Biochemical and Biophysical Research Communications, 1989, 164, 1331-1338.	1.0	19
65	Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate. AMB Express, 2014, 4, 56.	1.4	19
66	Camelina sativa meal hydrolysate as sustainable biomass for the production of carotenoids by Rhodosporidium toruloides. Biotechnology for Biofuels, 2020, 13, 47.	6.2	19
67	Yeast cell factory: fishing for the best one or engineering it?. Microbial Cell Factories, 2009, 8, 51.	1.9	18
68	Cloning of the Zygosaccharomyces bailii GAS 1 homologue and effect of cell wall engineering on protein secretory phenotype. Microbial Cell Factories, 2010, 9, 7.	1.9	18
69	Transcriptional Response to Lactic Acid Stress in the Hybrid Yeast Zygosaccharomyces parabailii. Applied and Environmental Microbiology, 2018, 84, .	1.4	18
70	Copper homeostasis as a target to improve Saccharomyces cerevisiae tolerance to oxidative stress. Metabolic Engineering, 2018, 46, 43-50.	3.6	18
71	Conversion of sugar beet residues into lipids by Lipomyces starkeyi for biodiesel production. Microbial Cell Factories, 2020, 19, 204.	1.9	18
72	Heterologous gene expression in continuous cultures of budding yeast. Applied Microbiology and Biotechnology, 1991, 34, 632-636.	1.7	17

#	Article	IF	CITATIONS
73	Development of high cell density cultures of engineeredSaccharomyces cerevisiae cells able to grow on lactose. Biotechnology Letters, 1992, 14, 1085-1088.	1.1	17
74	Assessing physio-macromolecular effects of lactic acid on <i>Zygosaccharomyces bailii</i> cells during microaerobic fermentation. FEMS Yeast Research, 2016, 16, fow058.	1.1	17
75	Effect of the leader sequence on the expression of recombinant C. rugosa lipase by S. cerevisiae cells. Biotechnology Letters, 1996, 18, 281.	1.1	16
76	l-ascorbic acid producing yeasts learn from plants how to recycle it. Metabolic Engineering, 2011, 13, 177-185.	3.6	16
77	Enhanced expression of heterologous proteins by the use of a superinducible vector in budding yeast. Applied Microbiology and Biotechnology, 1992, 36, 655-8.	1.7	15
78	Real-time flow cytometric quantification of GFP expression and Gfp-fluorescence generation in Saccharomyces cerevisiae. Journal of Microbiological Methods, 2000, 42, 57-64.	0.7	15
79	The Saccharomyces cerevisiae poly(A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes. Scientific Reports, 2016, 5, 18318.	1.6	15
80	Production of Organic Acids by Yeasts and Filamentous Fungi. , 2017, , 205-223.		15
81	Could microalgae be a strategic choice for responding to the demand for omega-3 fatty acids? A European perspective. Trends in Food Science and Technology, 2022, 121, 142-155.	7.8	15
82	Physiological and genetic modulation of inducible expression ofEscherichia coli ?-galactosidase inSaccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1988, 28, 160-165.	1.7	14
83	Isolation, Nucleotide Sequence, and Physiological Relevance of the Gene Encoding Triose Phosphate Isomerase from <i>Kluyveromyces lactis</i> . Applied and Environmental Microbiology, 1999, 65, 4216-4219.	1.4	14
84	CK2 activity is modulated by growth rate in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 2010, 398, 44-50.	1.0	12
85	Biotechnology for a more sustainable world. Biotechnology Advances, 2012, 30, 931-932.	6.0	12
86	<i>n</i> -butanol: challenges and solutions for shifting natural metabolic pathways into a viable microbial production. FEMS Microbiology Letters, 2016, 363, fnw070.	0.7	12
87	Changes in SAM2 expression affect lactic acid tolerance and lactic acid production in Saccharomyces cerevisiae. Microbial Cell Factories, 2014, 13, 147.	1.9	11
88	Protein and cell volume distributions during the production of beta-galactosidase in batch cultures of Kluyveromyces lactis. Journal of Biotechnology, 1987, 5, 227-231.	1.9	10
89	Differential localisation of nPKCδ during cell cycle progression. Biochemical and Biophysical Research Communications, 2002, 294, 127-131.	1.0	9
90	Monitoring the transport of recombinantCandida rugosalipase by a green fluorescent protein-lipase fusion. Biotechnology Letters, 2003, 25, 1945-1948.	1.1	9

#	Article	IF	CITATIONS
91	Molecular Tools and Protocols for Engineering the Acid-Tolerant Yeast Zygosaccharomyces bailii as a Potential Cell Factory. Methods in Molecular Biology, 2014, 1152, 63-85.	0.4	9
92	State of the Art on the Microbial Production of Industrially Relevant Organic Acids. Catalysts, 2022, 12, 234.	1.6	9
93	Recombinant Protein Production in Yeasts. , 2004, 267, 241-258.		8
94	Amyotrophic Lateral Sclerosis: A Diet Review. Foods, 2021, 10, 3128.	1.9	8
95	Isolation and sequence analysis of the gene encoding triose phosphate isomerase fromZygosaccharomyces bailii. Yeast, 2001, 18, 775-780.	0.8	7
96	Investigating the multibudded and binucleate phenotype of the yeast <i>Zygosaccharomyces bailii</i> growing on minimal medium. FEMS Yeast Research, 2008, 8, 906-915.	1.1	7
97	Using Glycerol to Produce European Sea Bass Feed With Oleaginous Microbial Biomass: Effects on Growth Performance, Filet Fatty Acid Profile, and FADS2 Gene Expression. Frontiers in Marine Science, 2021, 8, .	1.2	7
98	Selection of yeast cells with a higher plasmid copy number in a Saccharomyces cerevisiae autoselection system. Yeast, 1996, 12, 199-205.	0.8	6
99	Recombinant proteins and host cell physiology. Journal of Biotechnology, 2004, 109, 1-2.	1.9	6
100	Opposite effects of TPA on G1/S transition and on cell size in the low metastatic B16F1 with respect to high metastatic BL6 murine melanoma cells. Cancer Letters, 1998, 132, 159-164.	3.2	5
101	Relating growth dynamics and glucoamylase excretion of individual Saccharomyces cerevisiae cells. Journal of Microbiological Methods, 2000, 42, 49-55.	0.7	5
102	Relation between growth dynamics and diffusional limitations inSaccharomyces cerevisiaecells growing as entrapped in an insolubilised gelatin gel. FEMS Microbiology Letters, 2001, 195, 245-251.	0.7	5
103	A modular systems biology analysis of cell cycle entrance into S-phase. Topics in Current Genetics, 2005, , 325-347.	0.7	5
104	Optimization of Carotenoids Production from Camelina sativa Meal Hydrolysate by Rhodosporidium toruloides. Fermentation, 2021, 7, 208.	1.4	5
105	High lipase production by Candida rugosa is associated with G1 cells. A flow cytometry study. Biotechnology Letters, 2001, 23, 1803-1808.	1.1	4
106	Temperature-induced lipocalin (TIL): a shield against stress-inducing environmental shocks in Saccharomyces cerevisiae. FEMS Yeast Research, 2017, 17, .	1.1	3
107	VirMutSig: Discovery and assignment of viral mutational signatures from sequencing data. STAR Protocols, 2021, 2, 100911.	0.5	3
108	SKIOME Project: a curated collection of skin microbiome datasets enriched with study-related metadata. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	1.4	3

#	Article	IF	CITATIONS
109	Growth phase modulation of the productivity of α-galactosidase in budding yeast cultures. Journal of Biotechnology, 1989, 12, 71-78.	1.9	2
110	Microbial analysis at the single-cell level. Journal of Microbiological Methods, 2000, 42, 1-2.	0.7	2
111	Heterologous production of five Hepatitis C virus-derived antigens in three Saccharomyces cerevisiae host strains. Journal of Biotechnology, 2005, 120, 46-58.	1.9	2
112	Physiological Effects of GLT1 Modulation in Saccharomyces cerevisiae Strains Growing on Different Nitrogen Sources. Journal of Microbiology and Biotechnology, 2016, 26, 326-336.	0.9	2
113	Production of Metabolites and Heterologous Proteins. , 2014, , 299-326.		1
114	Title is missing!. Microbial Cell Factories, 2006, 5, P69.	1.9	0
115	IBS 2010 I. Journal of Biotechnology, 2011, 156, 237.	1.9	Ο