Heiko Peters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3461323/publications.pdf

Version: 2024-02-01

		933447	1125743	
13	1,697	10	13	
papers	citations	h-index	g-index	
13	13	13	1919	
all docs	docs citations	times ranked	citing authors	

#	Article	lF	CITATIONS
1	Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nature Genetics, 2000, 24, 391-395.	21.4	685
2	Antagonistic Interactions between FGF and BMP Signaling Pathways: A Mechanism for Positioning the Sites of Tooth Formation. Cell, 1997, 90, 247-255.	28.9	560
3	Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis. Developmental Biology, 2010, 340, 438-449.	2.0	125
4	Functional Consequences of Interactions between Pax9 and Msx1 Genes in Normal and Abnormal Tooth Development. Journal of Biological Chemistry, 2006, 281, 18363-18369.	3.4	107
5	Meta-analysis Reveals Genome-Wide Significance at 15q13 for Nonsyndromic Clefting of Both the Lip and the Palate, and Functional Analyses Implicate GREM1 As a Plausible Causative Gene. PLoS Genetics, 2016, 12, e1005914.	3.5	66
6	Derivation of a mouse model for conditional inactivation of Pax9. Genesis, 2007, 45, 460-464.	1.6	38
7	Species-specific modifications of mandible shape reveal independent mechanisms for growth and initiation of the coronoid. EvoDevo, 2015, 6, 35.	3.2	36
8	The Formation of Endoderm-Derived Taste Sensory Organs Requires a Pax9-Dependent Expansion of Embryonic Taste Bud Progenitor Cells. PLoS Genetics, 2014, 10, e1004709.	3.5	30
9	<i>Pax9</i> is required for cardiovascular development and interacts with <i>Tbx1</i> in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis. Development (Cambridge), 2019, 146, .	2.5	19
10	$\langle i \rangle Msx1 < i \rangle$ deficiency interacts with hypoxia and induces a morphogenetic regulation during lip development. Development (Cambridge), 2020, 147, .	2.5	14
11	Generation of Pax1/PAX1-Specific Monoclonal Antibodies. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 259-262.	1.6	10
12	Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype. BMC Developmental Biology, 2021, 21, 14.	2.1	6
13	Msx1 Heterozygosity in Mice Enhances Susceptibility to Phenytoin-Induced Hypoxic Stress Causing Cleft Palate. Cleft Palate-Craniofacial Journal, 2021, 58, 697-706.	0.9	1