Mathieu J-L Tschan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/346116/publications.pdf

Version: 2024-02-01

430874 377865 1,345 36 18 34 citations g-index h-index papers 37 37 37 1721 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Controlling polymer stereochemistry in ring-opening polymerization: a decade of advances shaping the future of biodegradable polyesters. Chemical Society Reviews, 2021, 50, 13587-13608.	38.1	62
2	Single-site cobalt and zinc catalysts for the ring-opening polymerization of lactide. European Polymer Journal, 2019, 120, 109208.	5.4	16
3	Polymerization of rac ‣actide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes. Angewandte Chemie, 2019, 131, 12715-12719.	2.0	7
4	Polymerization of rac â€Lactide Using Achiral Iron Complexes: Access to Thermally Stable Stereocomplexes. Angewandte Chemie - International Edition, 2019, 58, 12585-12589.	13.8	47
5	lsoselective Ring-Opening Polymerization of <i>rac</i> -Lactide from Chiral Takemoto's Organocatalysts: Elucidation of Stereocontrol. ACS Macro Letters, 2018, 7, 1413-1419.	4.8	62
6	Unlocking the Potential of Poly(<i>Ortho</i> Ester)s: A General Catalytic Approach to the Synthesis of Surfaceâ€Erodible Materials. Angewandte Chemie - International Edition, 2017, 56, 16664-16668.	13.8	24
7	Unlocking the Potential of Poly(<i>Ortho</i> Ester)s: A General Catalytic Approach to the Synthesis of Surfaceâ€Erodible Materials. Angewandte Chemie, 2017, 129, 16891-16895.	2.0	9
8	Enantioselective hydrogenation of ketones by iridium nanoparticles ligated with chiral secondary phosphine oxides. Catalysis Science and Technology, 2016, 6, 3758-3766.	4.1	41
9	Microstructurally controlled polymers of rac-lactide by lithium complexes. Comptes Rendus Chimie, 2016, 19, 167-172.	0.5	8
10	Tandem catalysis: a new approach to polypeptides and cyclic carbonates. Chemical Communications, 2014, 50, 13773-13776.	4.1	20
11	Zinc and cobalt complexes based on tripodal ligands: synthesis, structure and reactivity toward lactide. Dalton Transactions, 2014, 43, 4550.	3.3	42
12	Ruthenium Metal Nanoparticles in Hydrogenation: Influence of Phosphorus-Ligands. Topics in Catalysis, 2014, 57, 1054-1065.	2.8	26
13	A joint experimental/theoretical investigation of the MMA polymerization initiated by yttrium phenoxyamine complexes. Dalton Transactions, 2013, 42, 9226.	3.3	4
14	Yttrium catalysts for syndioselective \hat{l}^2 -butyrolactone polymerization: on the origin of ligand-induced stereoselectivity. Polymer Chemistry, 2013, 4, 360-367.	3.9	53
15	Supported neodymium catalysts for MMA polymerization: on the origin of surface-induced stereoselectivity. Polymer Chemistry, 2012, 3, 1730-1739.	3.9	18
16	Synthesis of biodegradable polymers from renewable resources. Polymer Chemistry, 2012, 3, 836-851.	3.9	389
17	Large Pâ^'P Distance Diphosphines and Their Monophosphine Analogues as Ligands in the Palladium-Catalyzed Telomerization of $1,3$ -Butadiene and Methanol. Organometallics, $2011, 30, 792$ - 799 .	2.3	29
18	Telomerisation of Butaâ€1,3â€diene and Methanol: Superiority of Chromanylâ€Type Phosphines in the Dow Process for the Industrial Production of 1â€MOD. Chemistry - A European Journal, 2011, 17, 8922-8928.	3.3	14

#	Article	IF	Citations
19	New processes for the selective production of 1-octene. Coordination Chemistry Reviews, 2011, 255, 1499-1517.	18.8	208
20	Efficient Bulky Phosphines for the Selective Telomerization of 1,3-Butadiene with Methanol. Journal of the American Chemical Society, 2010, 132, 6463-6473.	13.7	61
21	Copper(II) Triflate as a Source of Triflic Acid: Effective, Green Catalysis of Hydroalkoxylation Reactions. Advanced Synthesis and Catalysis, 2009, 351, 2496-2504.	4.3	68
22	Nondestructive Room-Temperature Adsorption of 2,4,6-tri (2′-thienyl) ⰹ1,3,5-triazineon a Si-B Interface: High-Resolution STM Imaging and Molecular Modeling. Physical Review Letters, 2008, 100, 076405.	7.8	30
23	Grafting of Organoruthenium Oligomers on Quartz Substrates:Â Synthesis, Electrochemistry, Optical Properties, and AFM Investigations. Chemistry of Materials, 2007, 19, 3754-3762.	6.7	3
24	Highly Selective Hydrogenation of Carbon-Carbon Multiple Bonds Catalyzed by the Cation [(C6Me6)2Ru2(PPh2)H2]+: Molecular Structure of [(C6Me6)2Ru2(PPh2)(CHCHPh)H]+, a Possible Intermediate in the Case of Phenylacetylene Hydrogenation. Chemistry - A European Journal, 2007, 13, 292-299.	3.3	12
25	A Surprising Reaction of Trimethylphosphane with the Unsaturated Diruthenium Complex [(Î-6-C6Me6)2Ru2(Î-42-H)3]+: Synthesis and Molecular Structure of the Cations [(Î-6-C6Me6)Ru2(PMe3)3(Î-42-H)3]+ and [(Î-6-C6Me6)2Ru2(PMe3)2(Î-42-H)(H)2]+. European Journal of Inorganic Chemistry, 2007, 2007, 509-513.	2.0	6
26	Dinuclear (Arene)ruthenium Complexes Containing a Chiral-at-Phosphorus Phosphanido Bridge. European Journal of Inorganic Chemistry, 2007, 2007, 3091-3100.	2.0	6
27	μ-Chloro-μ-diphenylphosphido-μ-hydrido-bis[(Î-6-hexamethylbenzene)ruthenium(II)] tetrafluoroborate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m954-m956.	0.2	1
28	(ν-Diphenylphosphido-κP:P)-μ-hydrido-(μ-4-hydroxybenzenethiolato-κ2S:S)bis[(η6-hexamethylbenzene)ruthen tetrafluoroborate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m2916-m2918.	ium(II)]	0
29	Dinuclear hexamethylbenzene ruthenium cations containing η1:η2-2-(ferrocenyl)ethen-1-yl ligands: Synthesis, structure, electrochemistry. Journal of Organometallic Chemistry, 2006, 691, 4304-4311.	1.8	5
30	The water-soluble cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+: Improved synthesis, aerobic oxidation, electrochemical properties and ligand exchange studies. Polyhedron, 2005, 24, 1961-1967.	2.2	3
31	Sulfur-containing trinuclear arene ruthenium clusters. Journal of Molecular Structure, 2005, 743, 177-181.	3.6	4
32	Reactivity of the Unsaturated Complex [(C6Me6)2Ru2(μ2-H)3]+toward Phosphines: Synthesis and Molecular Structure of the Dinuclear Cations [(C6Me6)2Ru2(μ2-PR2)(μ2-H)2]+and Characterization of the Pâ^C Bond Activation Intermediate [(C6Me6)2Ru2(μ2-PPh2)(μ2-H)(μ2-Ph)]+â€. Organometallics, 2005, 2 1974-1981.	2 4 ; ³	21
33	Subsequent Hydride Substitution in (Arene)trihydridodiruthenium Complexes: Synthesis and Structure of Thiolato-Bridged Diruthenium Cations of the Type [H2(arene)2Ru2(p-Xâ^'C6H4â^'S)]+ and [H(arene)2Ru2(p-Xâ^'C6H4â^'S)2]+. European Journal of Inorganic Chemistry, 2004, 2004, 2405-2411.	2.0	14
34	Supramolecular Cluster Catalysis: A Case Study of Benzene Hydrogenation. ChemInform, 2004, 35, no.	0.0	0
35	Supramolecular cluster catalysis: facts and problems. Journal of Organometallic Chemistry, 2004, 689, 1362-1369.	1.8	20
36	Supramolecular Cluster Catalysis: A Case Study of Benzene Hydrogenation. Chimia, 2003, 57, 593-596.	0.6	10