
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3461148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Archives of Biochemistry and Biophysics, 2010, 501, 65-72.	3.0	695
2	The Major Green Tea Polyphenol, (-)-Epigallocatechin-3-Gallate, Inhibits Obesity, Metabolic Syndrome, and Fatty Liver Disease in High-Fat–Fed Mice. Journal of Nutrition, 2008, 138, 1677-1683.	2.9	506
3	Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. American Journal of Clinical Nutrition, 2005, 81, 284S-291S.	4.7	421
4	Mechanisms of Cancer Prevention by Tea Constituents. Journal of Nutrition, 2003, 133, 3262S-3267S.	2.9	383
5	The chemistry and biotransformation of tea constituents. Pharmacological Research, 2011, 64, 87-99.	7.1	366
6	Hepatotoxicity of high oral dose (â^')-epigallocatechin-3-gallate in mice. Food and Chemical Toxicology, 2010, 48, 409-416.	3.6	337
7	Cancer chemopreventive activity and bioavailability of tea and tea polyphenols. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 523-524, 201-208.	1.0	288
8	The role of antioxidant versus proâ€oxidant effects of green tea polyphenols in cancer prevention. Molecular Nutrition and Food Research, 2011, 55, 844-854.	3.3	267
9	Epigallocatechin-3-Gallate Is Absorbed but Extensively Glucuronidated Following Oral Administration to Mice. Journal of Nutrition, 2003, 133, 4172-4177.	2.9	259
10	Antioxidative and anti-carcinogenic activities of tea polyphenols. Archives of Toxicology, 2009, 83, 11-21.	4.2	258
11	Tea and cancer prevention: Molecular mechanisms and human relevance. Toxicology and Applied Pharmacology, 2007, 224, 265-273.	2.8	239
12	Possible Controversy over Dietary Polyphenols:  Benefits vs Risks. Chemical Research in Toxicology, 2007, 20, 583-585.	3.3	218
13	Biotransformation of Green Tea Polyphenols and the Biological Activities of Those Metabolites. Molecular Pharmaceutics, 2007, 4, 819-825.	4.6	217
14	Piperine Enhances the Bioavailability of the Tea Polyphenol (â^')-Epigallocatechin-3-gallate in Mice. Journal of Nutrition, 2004, 134, 1948-1952.	2.9	206
15	Involvement of multidrug resistance-associated proteins in regulating cellular levels of (â°')-epigallocatechin-3-gallate and its methyl metabolites. Biochemical and Biophysical Research Communications, 2003, 310, 222-227.	2.1	174
16	Weight control and prevention of metabolic syndrome by green tea. Pharmacological Research, 2011, 64, 146-154.	7.1	151
17	Laboratory, Epidemiological, and Human Intervention Studies Show That Tea (Camellia sinensis) May Be Useful in the Prevention of Obesity ,. Journal of Nutrition, 2010, 140, 446-453.	2.9	148
18	Peracetylation as a Means of Enhancing in Vitro Bioactivity and Bioavailability of Epigallocatechin-3-Gallate. Drug Metabolism and Disposition, 2006, 34, 2111-2116.	3.3	147

#	Article	IF	CITATIONS
19	Inhibition of Key Digestive Enzymes by Cocoa Extracts and Procyanidins. Journal of Agricultural and Food Chemistry, 2011, 59, 5305-5311.	5.2	142
20	Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: Structure–activity relationship and molecular-modeling studies. Biochemical Pharmacology, 2005, 69, 1523-1531.	4.4	139
21	Molecular targets for the cancer preventive activity of tea polyphenols. Molecular Carcinogenesis, 2006, 45, 431-435.	2.7	138
22	Bioavailability issues in studying the health effects of plant polyphenolic compounds. Molecular Nutrition and Food Research, 2008, 52 Suppl 1, S139-51.	3.3	138
23	Avocado (Persea americana) Seed as a Source of Bioactive Phytochemicals. Current Pharmaceutical Design, 2013, 19, 6133-6140.	1.9	138
24	Effects of tea polyphenols on signal transduction pathways related to cancer chemoprevention. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 555, 3-19.	1.0	133
25	DOSE-DEPENDENT LEVELS OF EPIGALLOCATECHIN-3-GALLATE IN HUMAN COLON CANCER CELLS AND MOUSE PLASMA AND TISSUES. Drug Metabolism and Disposition, 2006, 34, 8-11.	3.3	128
26	Inhibition of carcinogenesis by tea constituents. Seminars in Cancer Biology, 2007, 17, 395-402.	9.6	128
27	Enzymatic synthesis of tea theaflavin derivatives and their anti-inflammatory and cytotoxic activities. Bioorganic and Medicinal Chemistry, 2004, 12, 459-467.	3.0	125
28	Delivery of Tea Polyphenols to the Oral Cavity by Green Tea Leaves and Black Tea Extract. Cancer Epidemiology Biomarkers and Prevention, 2004, 13, 132-137.	2.5	118
29	Inhibition of starch digestion by the green tea polyphenol, (â~')â€epigallocatechinâ€3â€gallate. Molecular Nutrition and Food Research, 2012, 56, 1647-1654.	3.3	111
30	Redox Properties of Tea Polyphenols and Related Biological Activities. Antioxidants and Redox Signaling, 2005, 7, 1704-1714.	5.4	102
31	(â^')â^'Epigallocatechinâ€3â€gallate Inhibits Pancreatic Lipase and Reduces Body Weight Gain in High Fatâ€Fed Obese Mice. Obesity, 2012, 20, 2311-2313.	3.0	100
32	Synthesis and biological activity of the tea catechin metabolites, M4 and M6 and their methoxy-derivatives. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 873-876.	2.2	94
33	Synthesis and Structure Identification of Thiol Conjugates of (â^')-Epigallocatechin Gallate and Their Urinary Levels in Mice. Chemical Research in Toxicology, 2005, 18, 1762-1769.	3.3	94
34	(â^')-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food and Function, 2011, 2, 111.	4.6	93
35	Tea consumption is inversely associated with weight status and other markers for metabolic syndrome in US adults. European Journal of Nutrition, 2013, 52, 1039-1048.	3.9	90
36	Dietary cocoa ameliorates obesity-related inflammation in high fat-fed mice. European Journal of Nutrition, 2014, 53, 149-158.	3.9	88

#	Article	IF	CITATIONS
37	Possible mechanisms of the cancer-preventive activities of green tea. Molecular Nutrition and Food Research, 2006, 50, 170-175.	3.3	87
38	A Â-Tocopherol-Rich Mixture of Tocopherols Inhibits Colon Inflammation and Carcinogenesis in Azoxymethane and Dextran Sulfate Sodium-Treated Mice. Cancer Prevention Research, 2009, 2, 143-152.	1.5	83
39	Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies. Food Chemistry, 2017, 216, 296-300.	8.2	76
40	Nordihydroguaiaretic acid: hepatotoxicity and detoxification in the mouse. Toxicon, 2002, 40, 1701-1708.	1.6	75
41	Metabolism of Dietary Polyphenols and Possible Interactions with Drugs. Current Drug Metabolism, 2007, 8, 499-507.	1.2	72
42	(â€)â€Epigallocatechinâ€3â€gallate decreases colonic inflammation and permeability in a mouse model of colitis, but reduces macronutrient digestion and exacerbates weight loss. Molecular Nutrition and Food Research, 2016, 60, 2267-2274.	3.3	69
43	Cocoa procyanidins with different degrees of polymerization possess distinct activities in models of colonic inflammation. Journal of Nutritional Biochemistry, 2015, 26, 827-831.	4.2	68
44	Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice. Journal of Nutritional Biochemistry, 2014, 25, 439-445.	4.2	65
45	The role of the mitochondrial oxidative stress in the cytotoxic effects of the green tea catechin, (–)â€epigallocatechinâ€3â€gallate, in oral cells. Molecular Nutrition and Food Research, 2014, 58, 665-676.	3.3	62
46	Differential prooxidative effects of the green tea polyphenol, (–)â€epigallocatechinâ€3â€gallate, in normal and oral cancer cells are related to differences in sirtuin 3 signaling. Molecular Nutrition and Food Research, 2015, 59, 203-211.	3.3	61
47	Anticancer and Anti-inflammatory Effects of Cysteine Metabolites of the Green Tea Polyphenol, (â~')-Epigallocatechin-3-gallate. Journal of Agricultural and Food Chemistry, 2010, 58, 10016-10019.	5.2	60
48	Effect of genistein on the bioavailability and intestinal cancer chemopreventive activity of (-)-epigallocatechin-3-gallate. Carcinogenesis, 2008, 29, 2019-2024.	2.8	58
49	Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis. BMC Complementary and Alternative Medicine, 2016, 16, 278.	3.7	55
50	tetra-O-Methylnordihydroguaiaretic acid inhibits melanoma in vivo. Cancer Letters, 2001, 171, 47-56.	7.2	53
51	Inhibition Of Tumorigenesis in <i>Apc</i> ^{Min/+} Mice by a Combination of (–)-Epigallocatechin-3-gallate and Fish Oil. Journal of Agricultural and Food Chemistry, 2007, 55, 7695-7700.	5.2	51
52	The Cancer Preventive Effects of Edible Mushrooms. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 1255-1263.	1.7	51
53	Does tea prevent cancer? Evidence from laboratory and human intervention studies. American Journal of Clinical Nutrition, 2013, 98, 1667S-1675S.	4.7	51
54	Inhibition of Intestinal Tumorigenesis in <i>Apc</i> ^{Min/+} Mice by Green Tea Polyphenols (Polyphenon E) and Individual Catechins. Nutrition and Cancer, 2007, 59, 62-69.	2.0	49

JOSHUA D LAMBERT

#	Article	IF	CITATIONS
55	A Colored Avocado Seed Extract as a Potential Natural Colorant. Journal of Food Science, 2011, 76, C1335-41.	3.1	48
56	Flavonoid intake is inversely associated with obesity and C-reactive protein, a marker for inflammation, in US adults. Nutrition and Diabetes, 2017, 7, e276-e276.	3.2	46
57	Dietary pretreatment with green tea polyphenol, (â^')-epigallocatechin-3-gallate reduces the bioavailability and hepatotoxicity of subsequent oral bolus doses of (â^')-epigallocatechin-3-gallate. Food and Chemical Toxicology, 2015, 76, 103-108.	3.6	44
58	Wheat Bran Oil and Its Fractions Inhibit Human Colon Cancer Cell Growth and Intestinal Tumorigenesis inApcmin/+Mice. Journal of Agricultural and Food Chemistry, 2006, 54, 9792-9797.	5.2	41
59	Bioavailability and stability issues in understanding the cancer preventive effects of tea polyphenols. Journal of the Science of Food and Agriculture, 2006, 86, 2256-2265.	3.5	41
60	Transdermal delivery of (-)-epigallocatechin-3-gallate, a green tea polyphenol, in mice. Journal of Pharmacy and Pharmacology, 2010, 58, 599-604.	2.4	40
61	In Vitro Antioxidant and Cancer Inhibitory Activity of a Colored Avocado Seed Extract. International Journal of Food Science, 2019, 2019, 1-7.	2.0	40
62	Modulation of metabolic syndromeâ€related inflammation by cocoa. Molecular Nutrition and Food Research, 2013, 57, 948-961.	3.3	39
63	Salivary hydrogen peroxide produced by holding or chewing green tea in the oral cavity. Free Radical Research, 2007, 41, 850-853.	3.3	37
64	Epigallocatechin-3-Gallate Inhibition of Myeloperoxidase and Its Counter-Regulation by Dietary Iron and Lipocalin 2 in Murine Model of Gut Inflammation. American Journal of Pathology, 2016, 186, 912-926.	3.8	37
65	Nordihydroguaiaretic Acid: A Review of Its Numerous and Varied Biological Activities. Pharmaceutical Biology, 2004, 42, 149-158.	2.9	35
66	Decaffeinated green tea and voluntary exercise induce gene changes related to beige adipocyte formation in high fat-fed obese mice. Journal of Functional Foods, 2015, 14, 210-214.	3.4	34
67	Inhibition of lung cancer growth in mice by dietary mixed tocopherols. Molecular Nutrition and Food Research, 2009, 53, 1030-1035.	3.3	33
68	Green Tea Polyphenols Mitigate Gliadinâ€Mediated Inflammation and Permeability in Vitro. Molecular Nutrition and Food Research, 2018, 62, e1700879.	3.3	33
69	N-Acetylcysteine enhances the lung cancer inhibitory effect of epigallocatechin-3-gallate and forms a new adduct. Free Radical Biology and Medicine, 2008, 44, 1069-1074.	2.9	31
70	Cytotoxic lignans from Larrea tridentata. Phytochemistry, 2005, 66, 811-815.	2.9	30
71	Synergistic inhibition of lung cancer cell lines by (-)-epigallocatechin-3-gallate in combination with clinically used nitrocatechol inhibitors of catechol-O-methyltransferase. Carcinogenesis, 2014, 35, 365-372.	2.8	30
72	Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chemistry, 2018, 255, 414-420.	8.2	30

#	Article	IF	CITATIONS
73	A Moderate-Fat Diet with One Avocado per Day Increases Plasma Antioxidants and Decreases the Oxidation of Small, Dense LDL in Adults with Overweight and Obesity: A Randomized Controlled Trial. Journal of Nutrition, 2020, 150, 276-284.	2.9	30
74	Voluntary exercise and green tea enhance the expression of genes related to energy utilization and attenuate metabolic syndrome in high fat fed mice. Molecular Nutrition and Food Research, 2014, 58, 1156-1159.	3.3	29
75	Reversal of hypermethylation and reactivation of genes by dietary polyphenolic compounds. Nutrition Reviews, 2008, 66, S18-S20.	5.8	28
76	Effects of culinary spices and psychological stress on postprandial lipemia and lipase activity: results of a randomized crossover study and in vitro experiments. Journal of Translational Medicine, 2015, 13, 7.	4.4	28
77	Soy protein concentrate mitigates markers of colonic inflammation and loss of gut barrier function in vitro and in vivo. Journal of Nutritional Biochemistry, 2017, 40, 201-208.	4.2	28
78	Impact of electronic cigarette heating coil resistance on the production of reactive carbonyls, reactive oxygen species and induction of cytotoxicity in human lung cancer cells in vitro. Regulatory Toxicology and Pharmacology, 2019, 109, 104500.	2.7	26
79	Shifts in dietary carbohydrate-lipid exposure regulate expression of the non-alcoholic fatty liver disease-associated gene PNPLA3/adiponutrin in mouse liver and HepG2 human liver cells. Metabolism: Clinical and Experimental, 2014, 63, 1352-1362.	3.4	25
80	Prevention of hepatitis C virus infection using a broad crossâ€neutralizing monoclonal antibody (AR4A) and epigallocatechin gallate. Liver Transplantation, 2016, 22, 324-332.	2.4	25
81	Perseorangin: A natural pigment from avocado (Persea americana) seed. Food Chemistry, 2019, 293, 15-22.	8.2	25
82	Cranberry extract attenuates hepatic inflammation in high-fat-fed obese mice. Journal of Nutritional Biochemistry, 2016, 37, 60-66.	4.2	23
83	Green Tea Polyphenols Inhibit Colorectal Tumorigenesis in Azoxymethane-Treated F344 Rats. Nutrition and Cancer, 2017, 69, 623-631.	2.0	23
84	Incorporating freeze-dried strawberry powder into a high-fat meal does not alter postprandial vascular function or blood markers of cardiovascular disease risk: a randomized controlled trial. American Journal of Clinical Nutrition, 2017, 105, 313-322.	4.7	23
85	Potential role of the mitochondria as a target for the hepatotoxic effects of (-)-epigallocatechin-3-gallate in mice. Food and Chemical Toxicology, 2018, 111, 302-309.	3.6	23
86	Analysis of Cocoa Proanthocyanidins Using Reversed Phase High-Performance Liquid Chromatography and Electrochemical Detection: Application to Studies on the Effect of Alkaline Processing. Journal of Agricultural and Food Chemistry, 2015, 63, 5970-5975.	5.2	21
87	Bitter taste sensitivity, food intake, and risk of malignant cancer in the UK Women's Cohort Study. European Journal of Nutrition, 2019, 58, 2111-2121.	3.9	21
88	Synthesis, characterization, and anti-melanoma activity of tetra-O-substituted analogs of nordihydroguaiaretic acid. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4752-4755.	2.2	20
89	Loss of Native Flavanols during Fermentation and Roasting Does Not Necessarily Reduce Digestive Enzyme-Inhibiting Bioactivities of Cocoa. Journal of Agricultural and Food Chemistry, 2016, 64, 3616-3625.	5.2	20
90	Development and Characterization of a Pilot-Scale Model Cocoa Fermentation System Suitable for Studying the Impact of Fermentation on Putative Bioactive Compounds and Bioactivity of Cocoa. Foods, 2019, 8, 102.	4.3	19

JOSHUA D LAMBERT

#	Article	IF	CITATIONS
91	The catechol-O-methyltransferase inhibitor, tolcapone, increases the bioavailability of unmethylated (-)-epigallocatechin-3-gallate in mice. Journal of Functional Foods, 2015, 17, 183-188.	3.4	17
92	Mitigation of nonalcoholic fatty liver disease in high-fat-fed mice by the combination of decaffeinated green tea extract and voluntary exercise. Journal of Nutritional Biochemistry, 2020, 76, 108262.	4.2	17
93	Fibroblast Growth Factor 21 (Fgf21) Gene Expression Is Elevated in the Liver of Mice Fed a High-Carbohydrate Liquid Diet and Attenuated by a Lipid Emulsion but Is Not Upregulated in the Liver of Mice Fed a High-Fat Obesogenic Diet. Journal of Nutrition, 2016, 146, 184-190.	2.9	16
94	Cancer prevention by tea and tea polyphenols. Asia Pacific Journal of Clinical Nutrition, 2008, 17 Suppl 1, 245-8.	0.4	16
95	Pharmacokinetic analysis by high-performance liquid chromatography of intravenous nordihydroguaiaretic acid in the mouse. Biomedical Applications, 2001, 754, 85-90.	1.7	15
96	Flavanol concentrations do not predict dipeptidyl peptidase-IV inhibitory activities of four cocoas with different processing histories. Food and Function, 2017, 8, 746-756.	4.6	15
97	Clovamide, a Hydroxycinnamic Acid Amide, Is a Resistance Factor Against Phytophthora spp. in Theobroma cacao. Frontiers in Plant Science, 2020, 11, 617520.	3.6	15
98	Dietary cocoa ameliorates non-alcoholic fatty liver disease and increases markers of antioxidant response and mitochondrial biogenesis in high fat-fed mice. Journal of Nutritional Biochemistry, 2021, 92, 108618.	4.2	13
99	Impact of Atomizer Age and Flavor on <i>In Vitro</i> Toxicity of Aerosols from a Third-Generation Electronic Cigarette against Human Oral Cells. Chemical Research in Toxicology, 2020, 33, 2527-2537.	3.3	12
100	Duckweed protein supports the growth and organ development of mice: A feeding study comparison to conventional casein protein. Journal of Food Science, 2021, 86, 1097-1104.	3.1	12
101	Benzotropolone inhibitors of estradiol methylation: kinetics and in silico modeling studies. Bioorganic and Medicinal Chemistry, 2005, 13, 2501-2507.	3.0	10
102	Research on tea and health. Pharmacological Research, 2011, 64, 85-86.	7.1	10
103	Flavanol Polymerization Is a Superior Predictor of α-Glucosidase Inhibitory Activity Compared to Flavanol or Total Polyphenol Concentrations in Cocoas Prepared by Variations in Controlled Fermentation and Roasting of the Same Raw Cocoa Beans. Antioxidants, 2019, 8, 635.	5.1	9
104	Inhibition of Secreted Phospholipase A ₂ by Proanthocyanidins: A Comparative Enzymological and in Silico Modeling Study. Journal of Agricultural and Food Chemistry, 2012, 60, 7417-7420.	5.2	8
105	Predicting Student Success Using In-Program Monitoring. American Journal of Pharmaceutical Education, 2017, 81, 111.	2.1	8
106	Gluconacetobacter diazotrophicus Inoculation of Two Lettuce Cultivars Affects Leaf and Root Growth under Hydroponic Conditions. Applied Sciences (Switzerland), 2022, 12, 1585.	2.5	8
107	Cancer Chemoprevention by Targeting Proteasomal Degradation: Fig. 1 Clinical Cancer Research, 2004, 10, 2220-2221.	7.0	7
108	Role of reactive oxygen species from the green tea catechin, (â^')-epigallocatechin-3-gallate in growth modulation of intestinal cells. Food Science and Biotechnology, 2015, 24, 1541-1548.	2.6	6

JOSHUA D LAMBERT

#	Article	IF	CITATIONS
109	Cancer Preventive Effects of Green Tea Polyphenols. , 2014, , 1309-1322.		5
110	Abstract 5435: Tolcapone inhibits catechol- <i>O</i> -methyl transferase-mediated methylation of (-)-epigallocatechin-3-gallate <i>in vivo</i> . Cancer Research, 2012, 72, 5435-5435.	0.9	5
111	Biotransformation and Bioavailability of Tea Polyphenols: Implications for Cancer Prevention Research. ACS Symposium Series, 2005, , 212-224.	0.5	4
112	Enzyme triggered release of aroma molecules from oil-in-water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 422, 19-23.	4.7	4
113	Vitamin-supplemented chewing gum can increase salivary and plasma levels of a panel of vitamins in healthy human participants. Journal of Functional Foods, 2018, 50, 37-44.	3.4	4
114	Abstract 3667: Pro-oxidant effects of the green tea catechin, (-)-epigallocatechin-3-gallate in oral cancer cells: A role for the mitochondria , 2013, , .		3
115	Antioxidant and Pro-Oxidant Activities of Green Tea Polyphenols in Cancer Prevention. , 2014, , 1191-1198.		2
116	Journal of Nutritional Biochemistry Special Issue: Polyphenols, obesity, and cardiometabolic health. Journal of Nutritional Biochemistry, 2021, 89, 108565.	4.2	2
117	Benzylisoquinoline alkaloid content in goldenseal (Hydrastis canadensis L.) is influenced by phenological stage, reproductive status, and time-of-day. Phytochemistry Letters, 2021, 42, 61-67.	1.2	2
118	Hass avocado (Persea americana) seed extract as a natural colorant. Planta Medica, 2014, 80, .	1.3	2
119	Dietary Soy Protein Concentrate Suppresses Colonic Inflammation and Loss of Gut Barrier Function In Vitro and in Mice. FASEB Journal, 2015, 29, 922.32.	0.5	2
120	Comparative effects of vacuum or conventional frying on the polyphenol chemistry and in vitro colon cancer stem cell inhibitory activity of purpleâ€flesh potatoes. Journal of Food Science, 2022, 87, 3260-3267.	3.1	2
121	Chocolate not necessarily healthier or tastier. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6318-E6318.	7.1	1
122	Cancer Prevention by Catechins, Flavonols, and Procyanidins. , 2010, , 613-631.		1
123	Green Tea Polyphenols. , 2010, , 402-410.		1
124	Cancer Prevention by Tea and Tea Constituents. Chemical and Functional Properties of Food Components Series, 2005, , .	0.1	1
125	Abstract 5436: The role of reactive oxygen species in (-)-epigallocatechin-3-gallate (EGCG)-induced cell growth inhibition and apoptosis in oral cancer cells. , 2012, , .		1
126	Abstract 610: The role of oxidative stress in the growth inhibitory and proapoptotic effects of brown button mushrooms (Agaricus bisporus) in human prostate cancer cells. , 2012, , .		1

#	Article	IF	CITATIONS
127	Inhibition of digestive enzymes by tea polyphenols: enzymological and in silico studies (1045.34). FASEB Journal, 2014, 28, 1045.34.	0.5	1
128	Inhibition of Gliadin Digestion by Green Tea Polyphenols and the Potential Implications for Celiac Disease. FASEB Journal, 2017, 31, 974.23.	0.5	1
129	An Evidence-Based Perspective of Camellia Sinensis (Green Tea) for Cancer Patients. Evidence-based Anticancer Complementary and Alternative Medicine, 2011, , 349-373.	0.1	0
130	Cocoa and human health. Molecular Nutrition and Food Research, 2013, 57, 933-933.	3.3	0
131	Cocoa supplementation can reduce systemic inflammation and body weight gain in obese mice. FASEB Journal, 2011, 25, 995.12.	0.5	0
132	Abstract 4242: Clinically used nitrocatechols and EGCG synergistically inhibit lung cancer cells in vitro. , 2011, , .		0
133	Dietary Cocoa Reduces Adipose Tissue Inflammation in High―Fat Fed Obese Mice. FASEB Journal, 2013, 27, 861.1.	0.5	0
134	Regulation of FGF21 Gene Expression by Nutritional Signals and Physical Activity in vivo and in vitro. FASEB Journal, 2013, 27, 865.8.	0.5	0
135	Abstract A22: Development and characterization of an oral cancer cell line resist to the cytotoxic effects of the green tea catechin, (-)-Epigallocatechin-3-gallate. , 2013, , .		0
136	The Role of Metallothioneins in the Differential Proâ€oxidant Effects of (â€)â€Epigallocatechinâ€3â€gallate (EGCG) in Oral Cells. FASEB Journal, 2015, 29, 118.1.	0.5	0
137	Cranberry Extract Ameliorates Obesityâ€Related Liver Inflammation via the Tollâ€Like Receptor 4 Pathway. FASEB Journal, 2015, 29, 118.3.	0.5	0
138	Abstract 2500: Grape compounds suppress colon cancer stem cells in vitro and in a rodent model of colon carcinogenesis. , 2016, , .		0
139	The Toxicity of Electronic Cigarette Vapor on Human Oral Cells. FASEB Journal, 2019, 33, 786.6.	0.5	0