
Wim Derave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3461060/publications.pdf Version: 2024-02-01

WIM DEDAVE

#	Article	IF	CITATIONS
1	Muscle Fibre Typology as a Novel Risk Factor for Hamstring Strain Injuries in Professional Football (Soccer): A Prospective Cohort Study. Sports Medicine, 2022, 52, 177-185.	3.1	11
2	Motor Unit Fatigability following Chronic Carnosine Supplementation in Aged Rats. Nutrients, 2022, 14, 514.	1.7	1
3	The ergogenic effect of acute carnosine and anserine supplementation: dosing, timing, and underlying mechanism. Journal of the International Society of Sports Nutrition, 2022, 19, 70-91.	1.7	8
4	The Muscle Typology of Elite and World-Class Swimmers. International Journal of Sports Physiology and Performance, 2022, 17, 1179-1186.	1.1	3
5	Proton magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations. NMR in Biomedicine, 2021, 34, e4266.	1.6	39
6	Determinants of last lap speed in paced and maximal 1500-m time trials. European Journal of Applied Physiology, 2021, 121, 525-537.	1.2	17
7	Relationships between Lower Limb Muscle Characteristics and Force–Velocity Profiles Derived during Sprinting and Jumping. Medicine and Science in Sports and Exercise, 2021, 53, 1400-1411.	0.2	7
8	The Influence of Muscle Fiber Typology on the Pacing Strategy of 200-m Freestyle Swimmers. International Journal of Sports Physiology and Performance, 2021, 16, 1670-1675.	1.1	3
9	Ergogenic effect of pre-exercise chicken broth ingestion on a high-intensity cycling time-trial. Journal of the International Society of Sports Nutrition, 2021, 18, 15.	1.7	3
10	Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cellular and Molecular Life Sciences, 2021, 78, 4615-4637.	2.4	85
11	Relationship between duty factor and external forces in slow recreational runners. BMJ Open Sport and Exercise Medicine, 2021, 7, e000996.	1.4	9
12	A Potential Role for Fructosamine-3-Kinase in Cataract Treatment. International Journal of Molecular Sciences, 2021, 22, 3841.	1.8	10
13	Histamine H ₁ and H ₂ receptors are essential transducers of the integrative exercise training response in humans. Science Advances, 2021, 7, .	4.7	19
14	Muscle Fiber Typology and Its Association With Start and Turn Performance in Elite Swimmers. International Journal of Sports Physiology and Performance, 2021, 16, 834-840.	1.1	6
15	Acute preexercise supplementation of combined carnosine and anserine enhances initial maximal power of Wingate tests in humans. Journal of Applied Physiology, 2021, 130, 1868-1878.	1.2	5
16	Oral anserine supplementation does not attenuate type-2 diabetes or diabetic nephropathy in BTBR ob/ob mice. Amino Acids, 2021, 53, 1269-1277.	1.2	6
17	Determinants of Performance in Paced and Maximal 800-m Running Time Trials. Medicine and Science in Sports and Exercise, 2021, 53, 2635-2644.	0.2	7
18	CORP: quantification of human skeletal muscle carnosine concentration by proton magnetic resonance spectroscopy. Journal of Applied Physiology, 2021, 131, 250-264.	1.2	11

#	Article	IF	CITATIONS
19	W′ Recovery Kinetics after Exhaustion: A Two-Phase Exponential Process Influenced by Aerobic Fitness. Medicine and Science in Sports and Exercise, 2021, 53, 1911-1921.	0.2	11
20	Sex-specific maturation of muscle metabolites carnosine, creatine, and carnitine over puberty: a longitudinal follow-up study. Journal of Applied Physiology, 2021, 131, 1241-1250.	1.2	2
21	Carnosine, oxidative and carbonyl stress, antioxidants, and muscle fiber characteristics of quadriceps muscle of patients with COPD. Journal of Applied Physiology, 2021, 131, 1230-1240.	1.2	7
22	Muscle Typology of World-Class Cyclists across Various Disciplines and Events. Medicine and Science in Sports and Exercise, 2021, 53, 816-824.	0.2	18
23	Carnosine and skeletal muscle dysfunction in a rodent multiple sclerosis model. Amino Acids, 2021, 53, 1749-1761.	1.2	8
24	Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation. Journal of Neuroinflammation, 2021, 18, 255.	3.1	13
25	Reply to da Eira Silva et al Journal of Applied Physiology, 2021, 131, 1615-1616.	1.2	0
26	Beta-alanine supplementation in patients with COPD receiving non-linear periodised exercise training or neuromuscular electrical stimulation: protocol of two randomised, double-blind, placebo-controlled trials. BMJ Open, 2020, 10, e038836.	0.8	4
27	The role of alanine glyoxylate transaminase-2 (agxt2) in β-alanine and carnosine metabolism of healthy mice and humans. European Journal of Applied Physiology, 2020, 120, 2749-2759.	1.2	3
28	Muscle fiber typology is associated with the incidence of overreaching in response to overload training. Journal of Applied Physiology, 2020, 129, 823-836.	1.2	19
29	Carnosinase-1 overexpression, but not aerobic exercise training, affects the development of diabetic nephropathy in BTBR <i>ob/ob</i> mice. American Journal of Physiology - Renal Physiology, 2020, 318, F1030-F1040.	1.3	11
30	Muscle fiber typology substantially influences time to recover from high-intensity exercise. Journal of Applied Physiology, 2020, 128, 648-659.	1.2	53
31	Predicting and Testing Bioavailability of Magnesium Supplements. Nutrients, 2019, 11, 1663.	1.7	26
32	Editorial: Personalized Sport and Exercise Nutrition. Frontiers in Nutrition, 2019, 6, 139.	1.6	2
33	Differences in muscle histidineâ€containing dipeptides in broilers. Journal of the Science of Food and Agriculture, 2019, 99, 5680-5686.	1.7	15
34	Eight weeks of static apnea training increases spleen volume but not acute spleen contraction. Respiratory Physiology and Neurobiology, 2019, 266, 144-149.	0.7	21
35	Acute Aerobic Exercise Leads to Increased Plasma Levels of R- and S-β-Aminoisobutyric Acid in Humans. Frontiers in Physiology, 2019, 10, 1240.	1.3	51
36	Fragmented Dosing of β-alanine Induces A Body Weight-Independent Pharmacokinetic Response. Nutrients, 2019, 11, 2869.	1.7	4

#	Article	IF	CITATIONS
37	Grounded Running Reduces Musculoskeletal Loading. Medicine and Science in Sports and Exercise, 2019, 51, 708-715.	0.2	22
38	An update on carnosine and anserine research. Amino Acids, 2019, 51, 1-4.	1.2	24
39	Sports Foods and Dietary Supplements for Optimal Function and Performance Enhancement in Track-and-Field Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 2019, 29, 198-209.	1.0	55
40	Development and validation of a sensitive LC–MS/MS assay for the quantification of anserine in human plasma and urine and its application to pharmacokinetic study. Amino Acids, 2019, 51, 103-114.	1.2	24
41	792-P: Effect of Oral Anserine Supplementation on Type 2 Diabetes and Diabetic Nephropathy in BTBR ob/ob Mice. Diabetes, 2019, 68, .	0.3	0
42	Late Breaking Abstract - Muscle carnosine in patients with COPD in comparison to age- and gender matched healthy controls: a cross-sectional study. , 2019, , .		1
43	Muscle carnosine in experimental autoimmune encephalomyelitis and multiple sclerosis. Multiple Sclerosis and Related Disorders, 2018, 21, 24-29.	0.9	13
44	Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: a randomised trial. British Journal of Nutrition, 2018, 119, 759-770.	1.2	37
45	Changes in lower limb muscle function and muscle mass following exercise-based interventions in patients with chronic obstructive pulmonary disease: A review of the English-language literature. Chronic Respiratory Disease, 2018, 15, 182-219.	1.0	52
46	Exercise alters and β-alanine combined with exercise augments histidyl dipeptide levels and scavenges lipid peroxidation products in human skeletal muscle. Journal of Applied Physiology, 2018, 125, 1767-1778.	1.2	27
47	Pharmacokinetics of β-Alanine Using Different Dosing Strategies. Frontiers in Nutrition, 2018, 5, 70.	1.6	10
48	Bi-articular Knee-Ankle-Foot Exoskeleton Produces Higher Metabolic Cost Reduction than Weight-Matched Mono-articular Exoskeleton. Frontiers in Neuroscience, 2018, 12, 69.	1.4	54
49	The Impact Of An Eight Week Apnea Training Program On Spleen Volume And Hematological Values. Medicine and Science in Sports and Exercise, 2018, 50, 286.	0.2	Ο
50	Late Breaking Abstract - Carnosine and related compounds in m. vastus lateralis of COPD patients: preliminary results. , 2018, , .		0
51	Discriminant musculoâ€skeletal leg characteristics between sprint and endurance elite Caucasian runners. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 275-281.	1.3	12
52	Cyclic movement frequency is associated with muscle typology in athletes. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 223-229.	1.3	18
53	Effects of Histidine and β-alanine Supplementation on Human Muscle Carnosine Storage. Medicine and Science in Sports and Exercise, 2017, 49, 602-609.	0.2	76
54	AAV9 delivered bispecific nanobody attenuates amyloid burden in the gelsolin amyloidosis mouse model. Human Molecular Genetics, 2017, 26, 1353-1364.	1.4	26

#	Article	IF	CITATIONS
55	Exoskeleton plantarflexion assistance for elderly. Gait and Posture, 2017, 52, 183-188.	0.6	48
56	Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nature Communications, 2017, 8, 16015.	5.8	149
57	Effects of carnosine supplementation on glucose metabolism: Pilot clinical trial. Obesity, 2016, 24, 1027-1034.	1.5	116
58	Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by βâ€alanine transamination. Journal of Physiology, 2016, 594, 4849-4863.	1.3	57
59	Role of histidyl dipeptides in contractile function of fast and slow motor units in rat skeletal muscle. Journal of Applied Physiology, 2016, 121, 164-172.	1.2	5
60	Changes in structural and metabolic muscle characteristics following exercise-based interventions in patients with COPD: a systematic review. Expert Review of Respiratory Medicine, 2016, 10, 521-545.	1.0	32
61	Possible Influences on the Interpretation of Functional Domain (FD) Near-Infrared Spectroscopy (NIRS): An Explorative Study. Applied Spectroscopy, 2016, 70, 363-371.	1.2	6
62	Exercise Training and Beta-Alanine-Induced Muscle Carnosine Loading. Frontiers in Nutrition, 2015, 2, 13.	1.6	10
63	Muscle Histidine-Containing Dipeptides Are Elevated by Glucose Intolerance in Both Rodents and Men. PLoS ONE, 2015, 10, e0121062.	1.1	24
64	Beta-alanine supplementation, muscle carnosine and exercise performance. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 63-70.	1.3	74
65	Aerobic and resistance training do not influence plasma carnosinase content or activity in type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E663-E669.	1.8	6
66	An ER-directed gelsolin nanobody targets the first step in amyloid formation in a gelsolin amyloidosis mouse model. Human Molecular Genetics, 2015, 24, 2492-2507.	1.4	38
67	β-Alanine does not act through branched-chain amino acid catabolism in carp, a species with low muscular carnosine storage. Fish Physiology and Biochemistry, 2015, 41, 281-287.	0.9	7
68	Plasma carnosine, but not muscle carnosine, attenuates high-fat diet-induced metabolic stress. Applied Physiology, Nutrition and Metabolism, 2015, 40, 868-876.	0.9	18
69	Effects of tail suspension on serum testosterone and molecular targets regulating muscle mass. Muscle and Nerve, 2015, 52, 278-288.	1.0	6
70	Uphill walking with a simple exoskeleton: Plantarflexion assistance leads to proximal adaptations. Gait and Posture, 2015, 41, 246-251.	0.6	30
71	Carnosine Content in Skeletal Muscle Is Dependent on Vitamin B6 Status in Rats. Frontiers in Nutrition, 2015, 2, 39.	1.6	18
72	Muscle Carnosine Is Associated with Cardiometabolic Risk Factors in Humans. PLoS ONE, 2015, 10, e0138707.	1.1	29

#	Article	IF	CITATIONS
73	Genetic Variations in the Androgen Receptor Are Associated with Steroid Concentrations and Anthropometrics but Not with Muscle Mass in Healthy Young Men. PLoS ONE, 2014, 9, e86235.	1.1	18
74	Doubling of Muscle Carnosine Concentration Does Not Improve Laboratory 1-Hr Cycling Time-Trial Performance. International Journal of Sport Nutrition and Exercise Metabolism, 2014, 24, 315-324.	1.0	33
75	Dietary Supplements for Aquatic Sports. International Journal of Sport Nutrition and Exercise Metabolism, 2014, 24, 437-449.	1.0	16
76	Enhancing performance during inclined loaded walking with a powered ankle–foot exoskeleton. European Journal of Applied Physiology, 2014, 114, 2341-2351.	1.2	40
77	β-Alanine Dose for Maintaining Moderately Elevated Muscle Carnosine Levels. Medicine and Science in Sports and Exercise, 2014, 46, 1426-1432.	0.2	37
78	Androgenic and estrogenic regulation of Atrogin-1, MuRF1 and myostatin expression in different muscle types of male mice. European Journal of Applied Physiology, 2014, 114, 751-761.	1.2	17
79	Muscle carnosine loading by beta-alanine supplementation is more pronounced in trained vs. untrained muscles. Journal of Applied Physiology, 2014, 116, 204-209.	1.2	60
80	Does low serum carnosinase activity favor high-intensity exercise capacity?. Journal of Applied Physiology, 2014, 116, 553-559.	1.2	23
81	Chaperone Nanobodies Protect Gelsolin Against MT1-MMP Degradation and Alleviate Amyloid Burden in the Gelsolin Amyloidosis Mouse Model. Molecular Therapy, 2014, 22, 1768-1778.	3.7	28
82	Gene expression of carnosine-related enzymes and transporters in skeletal muscle. European Journal of Applied Physiology, 2013, 113, 1169-1179.	1.2	66
83	Adaptation to walking with an exoskeleton that assists ankle extension. Gait and Posture, 2013, 38, 495-499.	0.6	97
84	Physiology and Pathophysiology of Carnosine. Physiological Reviews, 2013, 93, 1803-1845.	13.1	763
85	Use of ïز1⁄2-Alanine as an Ergogenic Aid. Nestle Nutrition Institute Workshop Series, 2013, 75, 99-108.	1.5	3
86	Effect of Beta-Alanine and Carnosine Supplementation on Muscle Contractility in Mice. Medicine and Science in Sports and Exercise, 2013, 45, 43-51.	0.2	57
87	Meal and Beta-Alanine Coingestion Enhances Muscle Carnosine Loading. Medicine and Science in Sports and Exercise, 2013, 45, 1478-1485.	0.2	42
88	A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking. PLoS ONE, 2013, 8, e56137.	1.1	329
89	Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans. American Journal of Physiology - Renal Physiology, 2012, 302, F1537-F1544.	1.3	71
90	The influence of sex, age and heritability on human skeletal muscle carnosine content. Amino Acids, 2012, 43, 13-20.	1.2	40

#	Article	IF	CITATIONS
91	Reduced muscle carnosine content in type 2, but not in type 1 diabetic patients. Amino Acids, 2012, 43, 21-24.	1.2	40
92	Carnosine in exercise and disease: introduction to the International Congress held at Ghent University, Belgium, July 2011. Amino Acids, 2012, 43, 1-4.	1.2	18
93	A New Method for Non-Invasive Estimation of Human Muscle Fiber Type Composition. PLoS ONE, 2011, 6, e21956.	1.1	80
94	Non-invasive Estimation Of Muscle Fiber Type Composition In Elite Athletes. Medicine and Science in Sports and Exercise, 2011, 43, 293.	0.2	0
95	Subsarcolemmal and Intramyofibrillar Mitochondria And Lipids In Morbidly Obese Patients: Extreme Weight Loss And Exercise. Medicine and Science in Sports and Exercise, 2011, 43, 886.	0.2	0
96	Effect Of Carnosine Loading On Skeletal Muscle Contractility In Mice. Medicine and Science in Sports and Exercise, 2011, 43, 850.	0.2	1
97	Effects of sprint training combined with vegetarian or mixed diet on muscle carnosine content and buffering capacity. European Journal of Applied Physiology, 2011, 111, 2571-2580.	1.2	60
98	Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids, 2011, 40, 1221-1229.	1.2	104
99	Physical Fitness in Morbidly Obese Patients: Effect of Gastric Bypass Surgery and Exercise Training. Obesity Surgery, 2011, 21, 61-70.	1.1	136
100	A-Z of nutritional supplements: dietary supplements, sports nutrition foods and ergogenic aids for health and performance-Part 20. British Journal of Sports Medicine, 2011, 45, 530-532.	3.1	7
101	β-Alanine supplementation reduces acidosis but not oxygen uptake response during high-intensity cycling exercise. European Journal of Applied Physiology, 2010, 108, 495-503.	1.2	107
102	Mouth rinse but not ingestion of a carbohydrate solution improves 1â€h cycle time trial performance. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, 105-111.	1.3	134
103	Muscle Carnosine Metabolism and β-Alanine Supplementation in Relation to Exercise and Training. Sports Medicine, 2010, 40, 247-263.	3.1	189
104	Important role of muscle carnosine in rowing performance. Journal of Applied Physiology, 2010, 109, 1096-1101.	1.2	133
105	Beware of the pickle: health effects of nitrate intake. Journal of Applied Physiology, 2009, 107, 1677-1677.	1.2	12
106	Dietary Arginine Supplementation Speeds Pulmonary V˙O2 Kinetics during Cycle Exercise. Medicine and Science in Sports and Exercise, 2009, 41, 1626-1632.	0.2	36
107	Carnosine loading and washout in human skeletal muscles. Journal of Applied Physiology, 2009, 106, 837-842.	1.2	153
108	Creatine Supplementation Augments Skeletal Muscle Carnosine Content in Senescence-Accelerated Mice (SAMP8). Rejuvenation Research, 2008, 11, 641-647.	0.9	21

#	Article	IF	CITATIONS
109	Human Sarcopenia Reveals an Increase in SOCS-3 and Myostatin and a Reduced Efficiency of Akt Phosphorylation. Rejuvenation Research, 2008, 11, 163-175B.	0.9	231
110	Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. Journal of Applied Physiology, 2008, 104, 1045-1055.	1.2	113
111	Fiber type-specific muscle glycogen sparing due to carbohydrate intake before and during exercise. Journal of Applied Physiology, 2007, 102, 183-188.	1.2	40
112	Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy. Physics in Medicine and Biology, 2007, 52, 6781-6794.	1.6	31
113	β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. Journal of Applied Physiology, 2007, 103, 1736-1743.	1.2	256
114	Effects of Postâ€ e bsorptive and Postprandial Exercise on Glucoregulation in Metabolic Syndrome. Obesity, 2007, 15, 704-711.	1.5	34
115	Ergogenic Effects of Creatine in Sports and Rehabilitation. , 2007, , 246-259.		18
116	Oral creatine supplementation in humans does not elevate urinary excretion of the carcinogen N-nitrososarcosine. Nutrition, 2006, 22, 332-333.	1.1	7
117	Electrolysis stimulates creatine transport and transporter cell surface expression in incubated mouse skeletal muscle: potential role of ROS. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E1250-E1257.	1.8	10
118	Human skeletal muscle atrophy in amyotrophic lateral sclerosis reveals a reduction in Akt and an increase in atroginâ€1. FASEB Journal, 2006, 20, 583-585.	0.2	127
119	Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. Journal of Physiology, 2005, 564, 649-660.	1.3	111
120	Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence. Experimental Gerontology, 2005, 40, 562-572.	1.2	57
121	No effects of lifelong creatine supplementation on sarcopenia in senescence-accelerated mice (SAMP8). American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E272-E277.	1.8	12
122	AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation. Journal of Applied Physiology, 2005, 98, 1228-1233.	1.2	24
123	Plasma guanidino compounds are altered by oral creatine supplementation in healthy humans. Journal of Applied Physiology, 2004, 97, 852-857.	1.2	45
124	Exercise programs for older men: mode and intensity to induce the highest possible health-related benefits. Preventive Medicine, 2004, 39, 823-833.	1.6	32
125	Creatine supplementation in health and disease: What is the evidence for long-term efficacy?. Molecular and Cellular Biochemistry, 2003, 244, 49-55.	1.4	26
126	Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment. Neurobiology of Disease, 2003, 13, 264-272.	2.1	97

#	Article	IF	CITATIONS
127	Combined creatine and protein supplementation in conjunction with resistance training promotes muscle GLUT-4 content and glucose tolerance in humans. Journal of Applied Physiology, 2003, 94, 1910-1916.	1.2	73
128	Prior exercise increases basal and insulin-induced p38 mitogen-activated protein kinase phosphorylation in human skeletal muscle. Journal of Applied Physiology, 2003, 94, 2337-2341.	1.2	20
129	Creatine supplementation in health and disease: What is the evidence for long-term efficacy?. , 2003, , 49-55.		5
130	Creatine supplementation in health and disease: what is the evidence for long-term efficacy?. Molecular and Cellular Biochemistry, 2003, 244, 49-55.	1.4	5
131	Treadmill Exercise Negatively Affects Visual Contribution to Static Postural Stability. International Journal of Sports Medicine, 2002, 23, 44-49.	0.8	65
132	Caffeine-Induced Impairment of Insulin Action but Not Insulin Signaling in Human Skeletal Muscle Is Reduced by Exercise. Diabetes, 2002, 51, 583-590.	0.3	148
133	Creatine Supplementation: Exploring the Role of the Creatine Kinase/Phosphocreatine System in Human Muscle. Applied Physiology, Nutrition, and Metabolism, 2001, 26, S79-S102.	1.7	40
134	Regulation of Muscle Glucose Transport during Exercise. International Journal of Sport Nutrition and Exercise Metabolism, 2001, 11, S71-S77.	1.0	10
135	Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content. Journal of Physiology, 2001, 531, 757-769.	1.3	113
136	Glucose, exercise and insulin: emerging concepts. Journal of Physiology, 2001, 535, 313-322.	1.3	198
137	Pro- and macroglycogenolysis in contracting rat skeletal muscle. Acta Physiologica Scandinavica, 2000, 169, 291-296.	2.3	24
138	No limiting role for glycogenin in determining maximal attainable glycogen levels in rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E398-E404.	1.8	29
139	Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle. Diabetes, 2000, 49, 1281-1287.	0.3	152
140	Contraction-stimulated muscle glucose transport and GLUT-4 surface content are dependent on glycogen content. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E1103-E1110.	1.8	58
141	Role of adenosine in regulating glucose uptake during contractions and hypoxia in rat skeletal muscle. Journal of Physiology, 1999, 515, 255-263.	1.3	33
142	Effect of branched-chain amino acids (BCAA), glucose, and glucose plus BCAA on endurance performance in rats. Medicine and Science in Sports and Exercise, 1999, 31, 583-587.	0.2	42
143	Hypoxia and contractions do not utilize the same signaling mechanism in stimulating skeletal muscle glucose transport. Biochimica Et Biophysica Acta - General Subjects, 1998, 1380, 396-404.	1.1	46
144	The influence of exercise and dehydration on postural stability. Ergonomics, 1998, 41, 782-789.	1.1	52

#	Article	IF	CITATIONS
145	Gender Differences in Blood Ammonia Response during Exercise. Archives of Physiology and Biochemistry, 1997, 105, 203-209.	1.0	6