Xu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3460942/publications.pdf Version: 2024-02-01

XII 7HANC

#	Article	IF	CITATIONS
1	Nanosheet-assembled NiCo-LDH hollow spheres as high-performance electrodes for supercapacitors. Journal of Colloid and Interface Science, 2022, 606, 1120-1127.	9.4	111
2	Microstructure regulation of pitch-based soft carbon anodes by iodine treatment towards high-performance potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 615, 485-493.	9.4	24
3	Oneâ€Dimensional Coâ€Carbonate Hydroxide@Niâ€MOFs Composite with Super Uniform Core–Shell Heterostructure for Ultrahigh Rate Performance Supercapacitor Electrode. Small, 2022, 18, e2200656.	10.0	17
4	Cobalt induced growth of hollow MOF spheres for high performance supercapacitors. Materials Chemistry Frontiers, 2021, 5, 482-491.	5.9	60
5	MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. Journal of Colloid and Interface Science, 2021, 592, 95-102.	9.4	76
6	Design of Oxygenâ€doped Co ₃ S ₄ Hollow Nanosheets by Suppressed Sulfurization for Supercapacitors. ChemElectroChem, 2021, 8, 3629-3636.	3.4	17
7	P-doped Co9S8 nanoparticles embedded on 3D spongy carbon-sheets as electrochemical catalyst for lithium-sulfur batteries. Chemical Engineering Journal, 2021, 426, 131798.	12.7	22
8	From 1D to 2D: dopamine constructed 2D NiCo-hydroxide nanosheets/graphene composites for high-performance supercapacitors. Sustainable Energy and Fuels, 2021, 5, 2373-2381.	4.9	5
9	Facile Synthesis of Heterostructured MoS ₂ –MoO ₃ Nanosheets with Active Electrocatalytic Sites for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 20478-20488.	14.6	115
10	A facile fabrication of 1D/2D nanohybrids composed of NiCo-hydroxide nanowires and reduced graphene oxide for high-performance asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 204-211.	6.0	23
11	High-Quality Inorganic Chemistry Teaching During COVID-19. Journal of Chemical Education, 2020, 97, 2945-2949.	2.3	7
12	Shape-controlled synthesis of Ni-based metal-organic frameworks with albizia flower-like spheres@nanosheets structure for high performance supercapacitors. Journal of Colloid and Interface Science, 2020, 575, 347-355.	9.4	51
13	Silicaâ€Assisted Fabrication of Nâ€doped Porous Carbon for Efficient Electrocatalytic Nitrogen Fixation. ChemCatChem, 2020, 12, 3453-3458.	3.7	5
14	Nitrogen-Doped Porous Carbon Networks with Active Fe–N <i>_x</i> Sites to Enhance Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 31860-31868.	8.0	39
15	Surface functionalization of graphene oxide with DBU as electrode materials for supercapacitors. Materials Research Express, 2019, 6, 085606.	1.6	6
16	Palladium nanoparticles hosted in graphene-based 2-dimension polyelectrolyte brushes for enhanced hydrogenation selectivity of o-chloronitrobenzene. Applied Surface Science, 2019, 485, 230-237.	6.1	15
17	Ultrathin 2D nitrogen-doped carbon nanosheets for high performance supercapacitors: insight into the effects of graphene oxides. Nanoscale, 2019, 11, 8588-8596.	5.6	49
18	Graphene Oxide Induced Growth of Nitrogenâ€Doped Carbon Nanotubes as a 1D/2D Composite for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 1115-1121.	3.4	13

Xu Zhang

#	Article	IF	CITATIONS
19	Green synthesis of functionalized graphene and their use as solid acid catalysts. Journal of Materials Research, 2018, 33, 3946-3952.	2.6	8
20	Metal–organic framework assisted synthesis of nitrogen-doped hollow carbon materials for enhanced supercapacitor performance. New Journal of Chemistry, 2018, 42, 17389-17395.	2.8	20
21	Graphene oxide template-directed synthesis of porous carbon nanosheets from expired wheat flour for high-performance supercapacitors. New Journal of Chemistry, 2018, 42, 11689-11696.	2.8	10
22	One-step salt-assisted solution combustion synthesis of Ni-based composites for use as supercapacitor electrodes. Journal of Alloys and Compounds, 2018, 765, 396-404.	5.5	8
23	Facile synthesis of 2D nitrogen-containing porous carbon nanosheets induced by graphene oxide for high-performance supercapacitors. Sustainable Energy and Fuels, 2018, 2, 2494-2501.	4.9	6
24	A N,S-codoped hierarchical carbon Foam@Porous carbon composite as freestanding cathode for high-performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2018, 768, 495-502.	5.5	23
25	Low-cost, large-scale, one-pot synthesis of C/Ni3(NO3)2(OH)4 composites for high performance supercapacitor. Materials Chemistry and Physics, 2018, 217, 291-299.	4.0	11
26	Starch Derived Porous Carbon Nanosheets for High-Performance Photovoltaic Capacitive Deionization. Environmental Science & amp; Technology, 2017, 51, 9244-9251.	10.0	120
27	Graphene: Sulfonated Graphene as Cationâ€5elective Coating: A New Strategy for Highâ€Performance Membrane Capacitive Deionization (Adv. Mater. Interfaces 16/2015). Advanced Materials Interfaces, 2015, 2, .	3.7	0
28	Sulfonated Graphene as Cationâ€Selective Coating: A New Strategy for Highâ€Performance Membrane Capacitive Deionization. Advanced Materials Interfaces, 2015, 2, 1500372.	3.7	75
29	Chemically converting graphene oxide to graphene with organic base for Suzuki reaction. Materials Research Bulletin, 2015, 67, 77-82.	5.2	16
30	KOH-activated depleted fullerene soot for electrochemical double-layer capacitors. Journal of Applied Electrochemistry, 2014, 44, 309-316.	2.9	21
31	Recyclable catalyst for catalytic hydrogenation of phenylacetylene by coupling Pd nanoparticles with highly compressible graphene aerogels. RSC Advances, 2014, 4, 59977-59980.	3.6	16
32	Activated nitrogen-doped carbons from polyvinyl chloride for high-performance electrochemical capacitors. Journal of Solid State Electrochemistry, 2014, 18, 49-58.	2.5	14
33	N/P-Codoped Thermally Reduced Graphene for High-Performance Supercapacitor Applications. Journal of Physical Chemistry C, 2013, 117, 14912-14919.	3.1	128
34	Bond Energy Prediction of Curie Temperature of Lithium Niobate Crystals. Journal of Physical Chemistry B, 2007, 111, 2587-2590.	2.6	19