
## **Thomas S Miller**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3460571/publications.pdf Version: 2024-02-01



THOMAS S MILLER

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Disentangling water, ion and polymer dynamics in an anion exchange membrane. Nature Materials, 2022, 21, 555-563.                                                                                                                                 | 13.3 | 32        |
| 2  | Lithium-sulfur battery diagnostics through distribution of relaxation times analysis. Energy Storage<br>Materials, 2022, 51, 97-107.                                                                                                              | 9.5  | 54        |
| 3  | Synthetic tethered silver nanoparticles on reduced graphene oxide for alkaline oxygen reduction catalysis. Journal of Materials Science, 2021, 56, 6966-6976.                                                                                     | 1.7  | 4         |
| 4  | Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Letters, 2021,<br>6, 395-403.                                                                                                                              | 8.8  | 340       |
| 5  | Understanding spontaneous dissolution of crystalline layered carbon nitride for tuneable photoluminescent solutions and glasses. Journal of Materials Chemistry A, 2021, 9, 2175-2183.                                                            | 5.2  | 8         |
| 6  | 2021 roadmap on lithium sulfur batteries. JPhys Energy, 2021, 3, 031501.                                                                                                                                                                          | 2.3  | 74        |
| 7  | A novel fuel cell design for operando energy-dispersive x-ray absorption measurements. Journal of<br>Physics Condensed Matter, 2021, 33, 314002.                                                                                                  | 0.7  | 6         |
| 8  | Iron, Nitrogen Coâ€Doped Carbon Spheres as Low Cost, Scalable Electrocatalysts for the Oxygen<br>Reduction Reaction. Advanced Functional Materials, 2021, 31, 2102974.                                                                            | 7.8  | 35        |
| 9  | Engineering Catalyst Layers for Nextâ€Generation Polymer Electrolyte Fuel Cells: A Review of Design,<br>Materials, and Methods. Advanced Energy Materials, 2021, 11, 2101025.                                                                     | 10.2 | 85        |
| 10 | PIMâ€1 as a Multifunctional Framework to Enable Highâ€Performance Solidâ€State Lithium–Sulfur Batteries.<br>Advanced Functional Materials, 2021, 31, 2104830.                                                                                     | 7.8  | 47        |
| 11 | Characterizing Batteries by In Situ Electrochemical Atomic Force Microscopy: A Critical Review.<br>Advanced Energy Materials, 2021, 11, 2101518.                                                                                                  | 10.2 | 40        |
| 12 | Dendrite suppression by anode polishing in zinc-ion batteries. Journal of Materials Chemistry A, 2021,<br>9, 15355-15362.                                                                                                                         | 5.2  | 41        |
| 13 | A New High: Cannabis as a budding source of carbon-based materials for electrochemical power sources. Current Opinion in Electrochemistry, 2021, , 100860.                                                                                        | 2.5  | 0         |
| 14 | Aquaporin-like water transport in nanoporous crystalline layered carbon nitride. Science Advances,<br>2020, 6, .                                                                                                                                  | 4.7  | 17        |
| 15 | Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on<br>Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties. ACS Applied Materials<br>& Interfaces, 2020, 12, 35132-35141.        | 4.0  | 65        |
| 16 | Dendritic silver self-assembly in molten-carbonate membranes for efficient carbon dioxide capture.<br>Energy and Environmental Science, 2020, 13, 1766-1775.                                                                                      | 15.6 | 15        |
| 17 | Quantitative trace level voltammetry in the presence of electrode fouling agents: Comparison of single-walled carbon nanotube network electrodes and screen-printed carbon electrodes. Journal of Electroanalytical Chemistry, 2020, 872, 114137. | 1.9  | 0         |
| 18 | SERS-Active Cu Nanoparticles on Carbon Nitride Support Fabricated Using Pulsed Laser Ablation.<br>Nanomaterials, 2019, 9, 1223.                                                                                                                   | 1.9  | 7         |

THOMAS S MILLER

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Formation of an ion-free crystalline carbon nitride and its reversible intercalation with ionic species and molecular water. Chemical Science, 2019, 10, 2519-2528.                                          | 3.7  | 30        |
| 20 | Production of phosphorene nanoribbons. Nature, 2019, 568, 216-220.                                                                                                                                           | 13.7 | 208       |
| 21 | Synthesis, Structure and Electronic Properties of Graphitic Carbon Nitride Films. Journal of Physical<br>Chemistry C, 2018, 122, 25183-25194.                                                                | 1.5  | 64        |
| 22 | Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange Membrane Water<br>Electrolyzers. Nanomaterials, 2018, 8, 432.                                                                    | 1.9  | 17        |
| 23 | Fast Exfoliation and Functionalisation of Twoâ€Dimensional Crystalline Carbon Nitride by Framework<br>Charging. Angewandte Chemie, 2018, 130, 12838-12842.                                                   | 1.6  | 14        |
| 24 | Fast Exfoliation and Functionalisation of Twoâ€Dimensional Crystalline Carbon Nitride by Framework<br>Charging. Angewandte Chemie - International Edition, 2018, 57, 12656-12660.                            | 7.2  | 35        |
| 25 | Carbon nitrides: synthesis and characterization of a new class of functional materials. Physical Chemistry Chemical Physics, 2017, 19, 15613-15638.                                                          | 1.3  | 339       |
| 26 | Pharaoh's Serpents: New Insights into a Classic Carbon Nitride Material. Zeitschrift Fur Anorganische<br>Und Allgemeine Chemie, 2017, 643, 1572-1580.                                                        | 0.6  | 12        |
| 27 | Single Crystal, Luminescent Carbon Nitride Nanosheets Formed by Spontaneous Dissolution. Nano<br>Letters, 2017, 17, 5891-5896.                                                                               | 4.5  | 76        |
| 28 | Ionic solutions of two-dimensional materials. Nature Chemistry, 2017, 9, 244-249.                                                                                                                            | 6.6  | 68        |
| 29 | Graphitic Carbon Nitride-Graphene Hybrid Nanostructure as a Catalyst Support for Polymer<br>Electrolyte Membrane Fuel Cells. ECS Transactions, 2016, 75, 885-897.                                            | 0.3  | 8         |
| 30 | Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers. Electrochimica Acta, 2016, 222, 44-57.                                                                                       | 2.6  | 97        |
| 31 | Versatile Polymer-Free Graphene Transfer Method and Applications. ACS Applied Materials &<br>Interfaces, 2016, 8, 8008-8016.                                                                                 | 4.0  | 95        |
| 32 | The Use of Graphitic Carbon Nitride Based Composite Anodes for Lithiumâ€lon Battery Applications.<br>Electroanalysis, 2015, 27, 2614-2619.                                                                   | 1.5  | 24        |
| 33 | Pt nanoparticle modified single walled carbon nanotube network electrodes for electrocatalysis:<br>Control of the specific surface area over three orders of magnitude. Catalysis Today, 2015, 244, 136-145. | 2.2  | 22        |
| 34 | Nucleation and Aggregative Growth of Palladium Nanoparticles on Carbon Electrodes: Experiment and Kinetic Model. Journal of Physical Chemistry C, 2015, 119, 17389-17397.                                    | 1.5  | 43        |
| 35 | Controlled functionalisation of single-walled carbon nanotube network electrodes for the<br>enhanced voltammetric detection of dopamine. Physical Chemistry Chemical Physics, 2015, 17,<br>26394-26402.      | 1.3  | 17        |
| 36 | Electrochemical activation of pristine single walled carbon nanotubes: impact on oxygen reduction and other surface sensitive redox processes. Physical Chemistry Chemical Physics, 2014, 16, 9966.          | 1.3  | 9         |

THOMAS S MILLER

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Dual-electrode measurements in a meniscus microcapillary electrochemical cell using a high aspect ratio carbon fibre ultramicroelectrode. Journal of Electroanalytical Chemistry, 2014, 729, 80-86. | 1.9 | 6         |
| 38 | Comparison and Reappraisal of Carbon Electrodes for the Voltammetric Detection of Dopamine.<br>Analytical Chemistry, 2013, 85, 11755-11764.                                                         | 3.2 | 143       |
| 39 | Boron doped diamond ultramicroelectrodes: a generic platform for sensing single nanoparticle electrocatalytic collisions. Chemical Communications, 2013, 49, 5657.                                  | 2.2 | 50        |
| 40 | Landing and Catalytic Characterization of Individual Nanoparticles on Electrode Surfaces. Journal of the American Chemical Society, 2012, 134, 18558-18561.                                         | 6.6 | 160       |
| 41 | Electrochemistry at carbon nanotube forests: sidewalls and closed ends allow fast electron transfer. Chemical Communications, 2012, 48, 7435.                                                       | 2.2 | 37        |