Xia-Yin Yao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3460497/xia-yin-yao-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

98
papers
4,324
citations
h-index

64
g-index

105
ext. papers
ext. citations

10.6
avg, IF
L-index

#	Paper	IF	Citations
98	Gravity-driven Poly(ethylene glycol)@Li1.5Al0.5Ge1.5(PO4)3 asymmetric solid polymer electrolytes for all-solid-state lithium batteries. <i>Journal of Power Sources</i> , 2022 , 518, 230756	8.9	5
97	Flexible Composite Solid Electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for Solid-State Sodium Batteries. <i>Energy Storage Materials</i> , 2022 ,	19.4	4
96	Tungsten and oxygen co-doped stable tetragonal phase Na3SbS4 with ultrahigh ionic conductivity for all-solid-state sodium batteries. <i>Applied Materials Today</i> , 2022 , 27, 101448	6.6	3
95	Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2021 , 133683	14.7	5
94	Wet-Milling Synthesis of Superionic Lithium Argyrodite Electrolytes with Different Concentrations of Lithium Vacancy. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 46644-46649	9.5	1
93	Understanding Lil-LiBr Catalyst Activity for Solid State LiS/S Reactions in an All-Solid-State Lithium Battery. <i>Nano Letters</i> , 2021 , 21, 8488-8494	11.5	6
92	Formed Li-Ag Alloy Interface Enables LiGePS-Based All-Solid-State Lithium Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 50076-50082	9.5	5
91	Synergistic Effects of Plasticizer and 3D Framework toward High-Performance Solid Polymer Electrolyte for Room-Temperature Solid-State Lithium Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4129-4137	6.1	12
90	Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries. <i>Journal of Power Sources</i> , 2021 , 491, 229565	8.9	14
89	Ultrasmall LiS-Carbon Nanotube Nanocomposites for High-Rate All-Solid-State Lithium-Sulfur Batteries. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	8
88	Quasi-Ionic Liquid Enabling Single-Phase Poly(vinylidene fluoride)-Based Polymer Electrolytes for Solid-State LiNi Co Mn O Li Batteries with Rigid-Flexible Coupling Interphase <i>Small Methods</i> , 2021 , 5, e2100262	12.8	36
87	10 fb-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries. <i>Advanced Materials</i> , 2021 , 33, e2100353	24	61
86	Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2021 , 38, 249-254	19.4	28
85	Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. <i>Nano Letters</i> , 2021 , 21, 5233-5239	11.5	32
84	Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. <i>Journal of Power Sources</i> , 2021 , 498, 229934	8.9	16
83	Engineering the interface between LiCoO2 and Li10GeP2S12 solid electrolytes with an ultrathin Li2CoTi3O8 interlayer to boost the performance of all-solid-state batteries. <i>Energy and Environmental Science</i> , 2021 , 14, 437-450	35.4	26
82	Na10SnSb2S12: A nanosized air-stable solid electrolyte for all-solid-state sodium batteries. <i>Chemical Engineering Journal</i> , 2021 , 420, 127692	14.7	7

(2020-2021)

81	All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes. <i>Electrochemical Energy Reviews</i> , 2021 , 4, 101-135	29.3	65
80	Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. <i>Advanced Materials</i> , 2021 , 33, e2000	17541	105
79	Dipolar and catalytic effects of an Fe3O4 based nitrogen-doped hollow carbon sphere framework for high performance lithium sulfur batteries. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 1771-1778	6.8	7
78	Liquid-Phase Synthesis of Nanosized Na11Sn2PS12 Solid Electrolytes for Room Temperature All-Solid-State Sodium Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1467-1473	6.1	2
77	Surface Engineered Li Metal Anode for All-Solid-State Lithium Metal Batteries with High Capacity. <i>ChemElectroChem</i> , 2021 , 8, 386-389	4.3	5
76	Bifunctional Interphase-Enabled Li10GeP2S12 Electrolytes for LithiumBulfur Battery. <i>ACS Energy Letters</i> , 2021 , 6, 862-868	20.1	29
75	Poly(methyl methacrylate)-Based Gel Polymer Electrolyte for High-Performance Solid State LiD2 Battery with Enhanced Cycling Stability. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3975-3982	6.1	9
74	One-dimensional NiS-CNT@Li7P3S11 nanocomposites as ionic/electronic additives for LiCoO2 based all-solid-state lithium batteries. <i>Electrochimica Acta</i> , 2021 , 398, 139280	6.7	O
73	Harnessing the Volume Expansion of MoS Anode by Structure Engineering to Achieve High Performance Beyond Lithium-Based Rechargeable Batteries. <i>Advanced Materials</i> , 2021 , 33, e2106232	24	16
72	High ionic conductivity and stable phase Na11.5Sn2Sb0.5Ti0.5S12 for all-solid-state sodium batteries. <i>Journal of Power Sources</i> , 2021 , 512, 230485	8.9	2
71	Bimetallic Hexagonal Layered Nito Sulfides with High Electrochemical Performance for All-Solid-State Lithium Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 17061-17067	8.3	1
70	Improving the Interfacial Stability between Lithium and Solid-State Electrolyte via Dipole-Structured Lithium Layer Deposited on Graphene Oxide. <i>Advanced Science</i> , 2020 , 7, 2000237	13.6	16
69	Passivation of the Cathode-Electrolyte Interface for 5 V-Class All-Solid-State Batteries. <i>ACS Applied Materials & District Materials &</i>	9.5	14
68	Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 7427-7437	6.1	31
67	Selenium-Infused Ordered Mesoporous Carbon for Room-Temperature All-Solid-State Lithium-Selenium Batteries with Ultrastable Cyclability. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 16541-16547	9.5	13
66	Synergistic effect of cobalt, nitrogen-codoped hollow carbon sphere hosts for high performance lithium sulfur batteries. <i>New Journal of Chemistry</i> , 2020 , 44, 5965-5971	3.6	1
65	Sulfur-Embedded FeS as a High-Performance Cathode for Room Temperature All-Solid-State Lithium-Sulfur Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 18519-18525	9.5	30
64	Sodium Ion Batteries: Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility (Adv. Energy Mater. 12/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070055	21.8	О

63	CoS@LiPS Hexagonal Platelets as Cathodes with Superior Interfacial Contact for All-Solid-State Lithium Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 14079-14086	9.5	22
62	Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility. <i>Advanced Energy Materials</i> , 2020 , 10, 1903698	21.8	67
61	Bio-inspired Nanoscaled Electronic/Ionic Conduction Networks for Room-Temperature All-Solid-State Sodium-Sulfur Battery. <i>Nano Today</i> , 2020 , 33, 100860	17.9	31
60	Cobalt-doped pyrite for Na11Sn2SbS11.5Se0.5 electrolyte based all-solid-state sodium battery with enhanced capacity. <i>Journal of Power Sources</i> , 2020 , 449, 227515	8.9	10
59	Prussian blue analog Co3[Co(CN)6]2 as a cathode material for lithium ulfur batteries. <i>Applied Physics Letters</i> , 2020 , 117, 163905	3.4	2
58	Self-Formed Electronic/Ionic Conductive Fe S @ S @ 0.9Na SbS ?0.1NaI Composite for High-Performance Room-Temperature All-Solid-State Sodium-Sulfur Battery. <i>Small</i> , 2020 , 16, e2001574	11	23
57	Coating of LiPS Electrolyte on CuCoS/Graphene Nanocomposite as a High-Performance Cathode for All-Solid-State Lithium Batteries. <i>ACS Applied Materials & Company Comp</i>	9.5	6
56	Ultrastable All-Solid-State Sodium Rechargeable Batteries. ACS Energy Letters, 2020 , 5, 2835-2841	20.1	53
55	Densified LiPSCl Nanorods with High Ionic Conductivity and Improved Critical Current Density for All-Solid-State Lithium Batteries. <i>Nano Letters</i> , 2020 , 20, 6660-6665	11.5	41
54	CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life. <i>Journal of Energy Chemistry</i> , 2020 , 40, 151-155	12	49
53	Grain-boundary-resistance-less Na3SbS4-xSex solid electrolytes for all-solid-state sodium batteries. <i>Nano Energy</i> , 2019 , 66, 104109	17.1	32
52	Titanium Dioxide Doping toward High-Lithium-Ion-Conducting Li1.5Al0.5Ge1.5(PO4)3 Glass-Ceramics for All-Solid-State Lithium Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7299-7305	6.1	8
51	PEDOT-PSS coated VS2 nanosheet anodes for high rate and ultrastable lithium-ion batteries. <i>New Journal of Chemistry</i> , 2019 , 43, 1681-1687	3.6	14
50	Preparation of new composite polymer electrolyte for long cycling all-solid-state lithium battery. <i>Ionics</i> , 2019 , 25, 907-916	2.7	13
49	Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. <i>Energy Storage Materials</i> , 2019 , 23, 168-180	19.4	25
48	High conductivity polymer electrolyte with comb-like structure via a solvent-free UV-cured method for large-area ambient all-solid-sate lithium batteries. <i>Journal of Materiomics</i> , 2019 , 5, 195-203	6.7	11
47	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2019 , 17, 266-274	19.4	61
46	Transitional Metal Catalytic Pyrite Cathode Enables Ultrastable Four-Electron-Based All-Solid-State Lithium Batteries. <i>ACS Nano</i> , 2019 , 13, 9551-9560	16.7	28

(2017-2019)

45	Magnetron Sputtering Molybdenum Disulfide-Optimized Interface Architecture. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 26880-26890	9.5	8
44	Construction of 3D Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries. <i>Small</i> , 2019 , 15, e1905849	11	26
43	Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. <i>Nano Energy</i> , 2019 , 57, 771-782	17.1	65
42	Core-Shell FeS@NaPSSe Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density. <i>ACS Nano</i> , 2018 , 12, 2809-2817	16.7	46
41	Highly Crystalline Layered VS Nanosheets for All-Solid-State Lithium Batteries with Enhanced Electrochemical Performances. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 10053-10063	9.5	61
40	Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. <i>Energy Storage Materials</i> , 2018 , 14, 58-74	19.4	228
39	High ion conductive Sb2O5-doped Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. <i>Journal of Power Sources</i> , 2018 , 389, 140-147	8.9	62
38	NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. <i>Rare Metals</i> , 2018 , 37, 480-487	5.5	32
37	Interface Re-Engineering of LiGePS Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life. <i>ACS Applied Materials & Description of Cycle Life</i> . <i>ACS Applied Materials & Description of Cycle Life</i> . <i>ACS Applied Materials & Description of Cycle Life</i> . <i>ACS Applied Materials & Description of Cycle Life</i> . <i>ACS Applied Materials & Description of Cycle Life</i> . <i>ACS Applied Materials & Description of Cycle Life</i> . <i>ACS Applied Materials & Description of Cycle Life</i> .	9.5	148
36	Nanoscaled NaPS Solid Electrolyte for All-Solid-State FeS/Na Batteries with Ultrahigh Initial Coulombic Efficiency of 95% and Excellent Cyclic Performances. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 12300-12304	9.5	49
35	In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. <i>Journal of Power Sources</i> , 2018 , 387, 72-80	8.9	67
34	FeS nanosheets as positive electrodes for all-solid-state lithium batteries. <i>Solid State Ionics</i> , 2018 , 318, 60-64	3.3	25
33	Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13438-13447	13	48
32	Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12098-12105	13	55
31	High-Performance All-Solid-State LithiumBulfur Batteries Enabled by Amorphous Sulfur-Coated Reduced Graphene Oxide Cathodes. <i>Advanced Energy Materials</i> , 2017 , 7, 1602923	21.8	241
30	Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23919-23925	13	53
29	An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16984-16993	13	128
28	Facile synthesis of Co9S8 nanosheets for lithium ion batteries with enhanced rate capability and cycling stability. <i>New Journal of Chemistry</i> , 2017 , 41, 9184-9191	3.6	16

27	A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. <i>Journal of Power Sources</i> , 2016 , 301, 47-53	8.9	273
26	High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. <i>Nano Letters</i> , 2016 , 16, 7148-7	54 1.5	243
25	All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. <i>Chinese Physics B</i> , 2016 , 25, 018802	1.2	117
24	Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte. <i>Journal of Power Sources</i> , 2016 , 307, 724-7	38 ^{.9}	44
23	Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A96-A101	3.9	82
22	NiS Nanorods as Cathode Materials for All-Solid-State Lithium Batteries with Excellent Rate Capability and Cycling Stability. <i>ChemElectroChem</i> , 2016 , 3, 764-769	4.3	31
21	Structure Integrity Endowed by a Ti-Containing Surface Layer towards Ultrastable LiNi0.8Co0.15Al0.05O2for All-Solid-State Lithium Batteries. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1530-A1534	3.9	35
20	Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. <i>Energy Storage Materials</i> , 2016 , 4, 59-65	19.4	67
19	Polydopamine-derived porous nanofibers as host of ZnFe2O4 nanoneedles: towards high-performance anodes for lithium-ion batteries. <i>RSC Advances</i> , 2015 , 5, 13315-13323	3.7	36
18	MoS2 nanoflowers consisting of nanosheets with a controllable interlayer distance as high-performance lithium ion battery anodes. <i>RSC Advances</i> , 2015 , 5, 7938-7943	3.7	90
17	Influence of the Liters based solid electrolytes on NCA electrochemical performances in all-solid-state lithium batteries. <i>Solid State Ionics</i> , 2015 , 274, 8-11	3.3	50
16	Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16040-16049	13	34
15	Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathodes in lithium-ion and all-solid-state lithium batteries. <i>Ionics</i> , 2015 , 21, 43-49	2.7	11
14	Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries. <i>Chemical Communications</i> , 2014 , 50, 14597-600	5.8	40
13	Facile synthesis of porous CoFe2O4 nanosheets for lithium-ion battery anodes with enhanced rate capability and cycling stability. <i>RSC Advances</i> , 2014 , 4, 27488-27492	3.7	48
12	Zinc ferrite nanorods coated with polydopamine-derived carbon for high-rate lithium ion batteries. <i>Electrochimica Acta</i> , 2014 , 146, 464-471	6.7	29
11	Polydopamine-assisted synthesis of hollow NiCo2O4 nanospheres as high-performance lithium ion battery anodes. <i>RSC Advances</i> , 2014 , 4, 37928	3.7	39
10	Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites. <i>Journal of Polymer Engineering</i> , 2013 , 33, 163-171	1.4	20

LIST OF PUBLICATIONS

9	A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7724		182	
8	Co3O4 nanowires as high capacity anode materials for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2012 , 521, 95-100	5.7	92	
7	Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide. <i>Polymer-Plastics Technology and Engineering</i> , 2012 , 51, 251-256		116	
6	Si/C nanocomposite anode materials by freeze-drying with enhanced electrochemical performance in lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 2733-2738	2.6	13	
5	Porous hematite (Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries. <i>Electrochemistry Communications</i> , 2011 , 13, 1439-1442	5.1	67	
4	Synthesis and electrochemical properties of layered lithium transition metal oxides. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2544-2549		69	
3	A Robust Li-Intercalated Interlayer with Strong Electron Withdrawing Ability Enables Durable and High-Rate Li Metal Anode. <i>ACS Energy Letters</i> ,1594-1603	20.1	8	
2	Air exposure towards stable Li/Li10GeP2S12 interface for all-solid-state lithium batteries		4	
1	Electrochemical Polishing: An Effective Strategy for Eliminating Li Dendrites. <i>Advanced Functional Materials</i> , 2203652	15.6	2	