Xia-Yin Yao

List of Publications by Citations

Source: https://exaly.com/author-pdf/3460497/xia-yin-yao-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

98
papers

4,324
citations

h-index

64
g-index

105
ext. papers

6,071
ext. citations

10.6
avg, IF

L-index

#	Paper	IF	Citations
98	A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. <i>Journal of Power Sources</i> , 2016 , 301, 47-53	8.9	273
97	High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. <i>Nano Letters</i> , 2016 , 16, 7148-71	54 1.5	243
96	High-Performance All-Solid-State LithiumBulfur Batteries Enabled by Amorphous Sulfur-Coated Reduced Graphene Oxide Cathodes. <i>Advanced Energy Materials</i> , 2017 , 7, 1602923	21.8	241
95	Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. <i>Energy Storage Materials</i> , 2018 , 14, 58-74	19.4	228
94	A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7724		182
93	Interface Re-Engineering of LiGePS Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life. <i>ACS Applied Materials & District Materials & D</i>	9.5	148
92	An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16984-16993	13	128
91	All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. <i>Chinese Physics B</i> , 2016 , 25, 018802	1.2	117
90	Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide. <i>Polymer-Plastics Technology and Engineering</i> , 2012 , 51, 251-256		116
89	Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. <i>Advanced Materials</i> , 2021 , 33, e2000)7:541	105
88	Co3O4 nanowires as high capacity anode materials for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2012 , 521, 95-100	5.7	92
87	MoS2 nanoflowers consisting of nanosheets with a controllable interlayer distance as high-performance lithium ion battery anodes. <i>RSC Advances</i> , 2015 , 5, 7938-7943	3.7	90
86	Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A96-A101	3.9	82
85	Synthesis and electrochemical properties of layered lithium transition metal oxides. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2544-2549		69
84	Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility. <i>Advanced Energy Materials</i> , 2020 , 10, 1903698	21.8	67
83	In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. <i>Journal of Power Sources</i> , 2018 , 387, 72-80	8.9	67
82	Porous hematite (Fe2O3) nanorods as an anode material with enhanced rate capability in lithium-ion batteries. <i>Electrochemistry Communications</i> , 2011 , 13, 1439-1442	5.1	67

(2020-2016)

81	Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. <i>Energy Storage Materials</i> , 2016 , 4, 59-65	19.4	67
80	Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. <i>Nano Energy</i> , 2019 , 57, 771-782	17.1	65
79	All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes. <i>Electrochemical Energy Reviews</i> , 2021 , 4, 101-135	29.3	65
78	High ion conductive Sb2O5-doped Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. <i>Journal of Power Sources</i> , 2018 , 389, 140-147	8.9	62
77	Highly Crystalline Layered VS Nanosheets for All-Solid-State Lithium Batteries with Enhanced Electrochemical Performances. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 10053-10063	9.5	61
76	High air-stability and superior lithium ion conduction of Li3+3P1-Zn S4-O by aliovalent substitution of ZnO for all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2019 , 17, 266-274	19.4	61
75	10 fh-Thick High-Strength Solid Polymer Electrolytes with Excellent Interface Compatibility for Flexible All-Solid-State Lithium-Metal Batteries. <i>Advanced Materials</i> , 2021 , 33, e2100353	24	61
74	Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12098-12105	13	55
73	Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23919-23925	13	53
72	Ultrastable All-Solid-State Sodium Rechargeable Batteries. ACS Energy Letters, 2020, 5, 2835-2841	20.1	53
71	Influence of the LittePS based solid electrolytes on NCA electrochemical performances in all-solid-state lithium batteries. <i>Solid State Ionics</i> , 2015 , 274, 8-11	3.3	50
70	Nanoscaled NaPS Solid Electrolyte for All-Solid-State FeS/Na Batteries with Ultrahigh Initial Coulombic Efficiency of 95% and Excellent Cyclic Performances. <i>ACS Applied Materials & Materials & Interfaces</i> , 2018 , 10, 12300-12304	9.5	49
69	CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life. Journal of Energy Chemistry, 2020 , 40, 151-155	12	49
68	Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13438-13447	13	48
67	Facile synthesis of porous CoFe2O4 nanosheets for lithium-ion battery anodes with enhanced rate capability and cycling stability. <i>RSC Advances</i> , 2014 , 4, 27488-27492	3.7	48
66	Core-Shell FeS@NaPSSe Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density. <i>ACS Nano</i> , 2018 , 12, 2809-2817	16.7	46
65	Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte. <i>Journal of Power Sources</i> , 2016 , 307, 724-73	8 .9	44
64	Densified LiPSCl Nanorods with High Ionic Conductivity and Improved Critical Current Density for All-Solid-State Lithium Batteries. <i>Nano Letters</i> , 2020 , 20, 6660-6665	11.5	41

63	Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries. <i>Chemical Communications</i> , 2014 , 50, 14597-600	5.8	40
62	Polydopamine-assisted synthesis of hollow NiCo2O4 nanospheres as high-performance lithium ion battery anodes. <i>RSC Advances</i> , 2014 , 4, 37928	3.7	39
61	Polydopamine-derived porous nanofibers as host of ZnFe2O4 nanoneedles: towards high-performance anodes for lithium-ion batteries. <i>RSC Advances</i> , 2015 , 5, 13315-13323	3.7	36
60	Quasi-Ionic Liquid Enabling Single-Phase Poly(vinylidene fluoride)-Based Polymer Electrolytes for Solid-State LiNi Co Mn O Li Batteries with Rigid-Flexible Coupling Interphase <i>Small Methods</i> , 2021 , 5, e2100262	12.8	36
59	Structure Integrity Endowed by a Ti-Containing Surface Layer towards Ultrastable LiNi0.8Co0.15Al0.05O2for All-Solid-State Lithium Batteries. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A1530-A1534	3.9	35
58	Poly(vinylidene fluoride) nanofibrous mats with covalently attached SiO2 nanoparticles as an ionic liquid host: enhanced ion transport for electrochromic devices and lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16040-16049	13	34
57	Grain-boundary-resistance-less Na3SbS4-xSex solid electrolytes for all-solid-state sodium batteries. <i>Nano Energy</i> , 2019 , 66, 104109	17.1	32
56	NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. <i>Rare Metals</i> , 2018 , 37, 480-487	5.5	32
55	Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. <i>Nano Letters</i> , 2021 , 21, 5233-5239	11.5	32
54	Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 7427-7437	6.1	31
53	Bio-inspired Nanoscaled Electronic/Ionic Conduction Networks for Room-Temperature All-Solid-State Sodium-Sulfur Battery. <i>Nano Today</i> , 2020 , 33, 100860	17.9	31
52	NiS Nanorods as Cathode Materials for All-Solid-State Lithium Batteries with Excellent Rate Capability and Cycling Stability. <i>ChemElectroChem</i> , 2016 , 3, 764-769	4.3	31
51	Sulfur-Embedded FeS as a High-Performance Cathode for Room Temperature All-Solid-State Lithium-Sulfur Batteries. <i>ACS Applied Materials & District Materials</i> (12, 18519-18525)	9.5	30
50	Zinc ferrite nanorods coated with polydopamine-derived carbon for high-rate lithium ion batteries. <i>Electrochimica Acta</i> , 2014 , 146, 464-471	6.7	29
49	Bifunctional Interphase-Enabled Li10GeP2S12 Electrolytes for LithiumBulfur Battery. <i>ACS Energy Letters</i> , 2021 , 6, 862-868	20.1	29
48	Transitional Metal Catalytic Pyrite Cathode Enables Ultrastable Four-Electron-Based All-Solid-State Lithium Batteries. <i>ACS Nano</i> , 2019 , 13, 9551-9560	16.7	28
47	Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. <i>Energy Storage Materials</i> , 2021 , 38, 249-254	19.4	28
46	Construction of 3D Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries. Small, 2019 , 15, e1905849	11	26

(2019-2021)

Li2CoTi3O8 interlayer to boost the performance of all-solid-state batteries. <i>Energy and Environmental Science</i> , 2021 , 14, 437-450	35.4	26
Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. <i>Energy Storage Materials</i> , 2019 , 23, 168-180	19.4	25
FeS nanosheets as positive electrodes for all-solid-state lithium batteries. <i>Solid State Ionics</i> , 2018 , 318, 60-64	3.3	25
Self-Formed Electronic/Ionic Conductive Fe S @ S @ 0.9Na SbS ?0.1NaI Composite for High-Performance Room-Temperature All-Solid-State Sodium-Sulfur Battery. <i>Small</i> , 2020 , 16, e2001574	4 ¹¹	23
CoS@LiPS Hexagonal Platelets as Cathodes with Superior Interfacial Contact for All-Solid-State Lithium Batteries. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2020 , 12, 14079-14086	9.5	22
Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites. <i>Journal of Polymer Engineering</i> , 2013 , 33, 163-171	1.4	20
Improving the Interfacial Stability between Lithium and Solid-State Electrolyte via Dipole-Structured Lithium Layer Deposited on Graphene Oxide. <i>Advanced Science</i> , 2020 , 7, 2000237	13.6	16
Facile synthesis of Co9S8 nanosheets for lithium ion batteries with enhanced rate capability and cycling stability. <i>New Journal of Chemistry</i> , 2017 , 41, 9184-9191	3.6	16
Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. <i>Journal of Power Sources</i> , 2021 , 498, 229934	8.9	16
Harnessing the Volume Expansion of MoS Anode by Structure Engineering to Achieve High Performance Beyond Lithium-Based Rechargeable Batteries. <i>Advanced Materials</i> , 2021 , 33, e2106232	24	16
PEDOT-PSS coated VS2 nanosheet anodes for high rate and ultrastable lithium-ion batteries. <i>New Journal of Chemistry</i> , 2019 , 43, 1681-1687	3.6	14
Passivation of the Cathode-Electrolyte Interface for 5 V-Class All-Solid-State Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 28083-28090	9.5	14
Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries. <i>Journal of Power Sources</i> , 2021 , 491, 229565	8.9	14
Preparation of new composite polymer electrolyte for long cycling all-solid-state lithium battery. <i>Ionics</i> , 2019 , 25, 907-916	2.7	13
Selenium-Infused Ordered Mesoporous Carbon for Room-Temperature All-Solid-State Lithium-Selenium Batteries with Ultrastable Cyclability. <i>ACS Applied Materials & Diterfaces</i> , 2020 , 12, 16541-16547	9.5	13
Si/C nanocomposite anode materials by freeze-drying with enhanced electrochemical performance in lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 2733-2738	2.6	13
Synergistic Effects of Plasticizer and 3D Framework toward High-Performance Solid Polymer Electrolyte for Room-Temperature Solid-State Lithium Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 4129-4137	6.1	12
High conductivity polymer electrolyte with comb-like structure via a solvent-free UV-cured method for large-area ambient all-solid-sate lithium batteries. <i>Journal of Materiomics</i> , 2019 , 5, 195-203	6.7	11
	Environmental Science, 2021, 14, 437-450 Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. Energy Storage Materials, 2019, 23, 168-180 FeS nanosheets as positive electrodes for all-solid-state lithium batteries. Solid State Ionics, 2018, 318, 60-64 Self-Formed Electronic/Ionic Conductive Fe S @ S @ 0.9Na Sb5 70.1Nal Composite for High-Performance Room-Temperature All-Solid-State Sodium-Sulfur Battery. Small, 2020, 16, e200157-8 CoS@LiPS Hexagonal Platelets as Cathodes with Superior Interfacial Contact for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 14079-14086 Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites. Journal of Polymer Engineering, 2013, 33, 163-171 Improving the Interfacial Stability between Lithium and Solid-State Electrolyte via Dipole-Structured Lithium Layer Deposited on Graphene Oxide. Advanced Science, 2020, 7, 2000237 Facile synthesis of Co9S8 nanosheets for lithium ion batteries with enhanced rate capability and cycling stability. New Journal of Chemistry, 2017, 41, 9184-9191 Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. Journal of Power Sources, 2021, 498, 229934 Harnessing the Volume Expansion of MoS Anode by Structure Engineering to Achieve High Performance Beyond Lithium-Based Rechargeable Batteries. Advanced Materials, 2021, 33, e2106232 PEDOT-PSS coated VS2 nanosheet anodes for high rate and ultrastable lithium-ion batteries. New Journal of Chemistry, 2019, 43, 1681-1687 Passivation of the Cathode-Electrolyte Interface for 5 V-Class All-Solid-State Batteries. Journal of Power Sources, 2021, 491, 229565 Preparation of new composite polymer electrolyte for long cycling all-solid-state lithium-selenium Batteries with Ultrastable Cyclability. ACS Applied Materials & Interfaces, 2020, 12, 16	Li 2Cott 1308 interlayer to boost the performance of all-solid-state batteries. Energy and Environmental Science, 2021, 14, 437-450 Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. Energy Storage Materials, 2019, 23, 168-180 Self-Formed Electronic/lonic Conductive Fe S. @ S. @ 0.9Na SbS 70.1Nal Composite for High-Performance Room-Temperature All-Solid-state lithium batteries. Solid State lonics, 2018, 318, 60-64 Self-Formed Electronic/lonic Conductive Fe S. @ S. @ 0.9Na SbS 70.1Nal Composite for High-Performance Room-Temperature All-Solid-state Sodium-Sulfur Battery. Small, 2020, 16, e2001574 CoS@LIPS Hexagonal Platelets as Cathodes with Superior Interfacial Contact for All-Solid-State Lithium Batteries. ACS Applied Materials & amp; Interfaces, 2020, 12, 14079-14086 Non-isothermal crystallization kinetics of poly (lactic acid)/graphene nanocomposites. Journal of Polymer Engineering, 2013, 33, 163-171 Improving the Interfacial Stability between Lithium and Solid-State Electrolyte via Dipole-Structured Lithium Layer Deposited on Graphene Oxide. Advanced Science, 2020, 7, 2000237 Facile synthesis of Co958 nanosheets for lithium ion batteries with enhanced rate capability and cycling stability. New Journal of Chemistry, 2017, 41, 9184-9191 Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6012 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. Journal of Power Sources, 2021, 498, 229934 Harnessing the Volume Expansion of MoS Anode by Structure Engineering to Achieve High Performance Beyond Lithium-Based Rechargeable Batteries. Advanced Materials, 2021, 33, e2106232 PEDOT-PSS coated VS2 nanosheet anodes for high rate and ultrastable lithium-ion batteries. New Journal of Chemistry, 2019, 43, 1681-1687 Passivation of the Cathode-Electrolyte Interface for S V-Class All-Solid-State Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28083-28090 S

27	Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathodes in lithium-ion and all-solid-state lithium batteries. <i>Ionics</i> , 2015 , 21, 43-49	2.7	11
26	Cobalt-doped pyrite for Na11Sn2SbS11.5Se0.5 electrolyte based all-solid-state sodium battery with enhanced capacity. <i>Journal of Power Sources</i> , 2020 , 449, 227515	8.9	10
25	Poly(methyl methacrylate)-Based Gel Polymer Electrolyte for High-Performance Solid State Li D 2 Battery with Enhanced Cycling Stability. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3975-3982	6.1	9
24	Titanium Dioxide Doping toward High-Lithium-Ion-Conducting Li1.5Al0.5Ge1.5(PO4)3 Glass-Ceramics for All-Solid-State Lithium Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 7299-7305	6.1	8
23	Effective Strategy for Enhancing the Performance of LiTiO Anodes in Lithium-Ion Batteries: Magnetron Sputtering Molybdenum Disulfide-Optimized Interface Architecture. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 26880-26890	9.5	8
22	Ultrasmall LiS-Carbon Nanotube Nanocomposites for High-Rate All-Solid-State Lithium-Sulfur Batteries. <i>ACS Applied Materials & Acs Applied &</i>	9.5	8
21	A Robust Li-Intercalated Interlayer with Strong Electron Withdrawing Ability Enables Durable and High-Rate Li Metal Anode. <i>ACS Energy Letters</i> ,1594-1603	20.1	8
20	Na10SnSb2S12: A nanosized air-stable solid electrolyte for all-solid-state sodium batteries. <i>Chemical Engineering Journal</i> , 2021 , 420, 127692	14.7	7
19	Dipolar and catalytic effects of an Fe3O4 based nitrogen-doped hollow carbon sphere framework for high performance lithium sulfur batteries. <i>Inorganic Chemistry Frontiers</i> , 2021 , 8, 1771-1778	6.8	7
18	Understanding Lil-LiBr Catalyst Activity for Solid State LiS/S Reactions in an All-Solid-State Lithium Battery. <i>Nano Letters</i> , 2021 , 21, 8488-8494	11.5	6
17	Coating of LiPS Electrolyte on CuCoS/Graphene Nanocomposite as a High-Performance Cathode for All-Solid-State Lithium Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 33810-33816	9.5	6
16	Gravity-driven Poly(ethylene glycol)@Li1.5Al0.5Ge1.5(PO4)3 asymmetric solid polymer electrolytes for all-solid-state lithium batteries. <i>Journal of Power Sources</i> , 2022 , 518, 230756	8.9	5
15	Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lithium-sulfur batteries. <i>Chemical Engineering Journal</i> , 2021 , 133683	14.7	5
14	Formed Li-Ag Alloy Interface Enables LiGePS-Based All-Solid-State Lithium Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 50076-50082	9.5	5
13	Surface Engineered Li Metal Anode for All-Solid-State Lithium Metal Batteries with High Capacity. <i>ChemElectroChem</i> , 2021 , 8, 386-389	4.3	5
12	Flexible Composite Solid Electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for Solid-State Sodium Batteries. <i>Energy Storage Materials</i> , 2022 ,	19.4	4
11	Air exposure towards stable Li/Li10GeP2S12 interface for all-solid-state lithium batteries		4
10	Tungsten and oxygen co-doped stable tetragonal phase Na3SbS4 with ultrahigh ionic conductivity for all-solid-state sodium batteries. <i>Applied Materials Today</i> , 2022 , 27, 101448	6.6	3

LIST OF PUBLICATIONS

9	Prussian blue analog Co3[Co(CN)6]2 as a cathode material for lithium ulfur batteries. <i>Applied Physics Letters</i> , 2020 , 117, 163905	3.4	2	
8	Liquid-Phase Synthesis of Nanosized Na11Sn2PS12 Solid Electrolytes for Room Temperature All-Solid-State Sodium Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 1467-1473	6.1	2	
7	High ionic conductivity and stable phase Na11.5Sn2Sb0.5Ti0.5S12 for all-solid-state sodium batteries. <i>Journal of Power Sources</i> , 2021 , 512, 230485	8.9	2	
6	Electrochemical Polishing: An Effective Strategy for Eliminating Li Dendrites. <i>Advanced Functional Materials</i> ,2203652	15.6	2	
5	Synergistic effect of cobalt, nitrogen-codoped hollow carbon sphere hosts for high performance lithium sulfur batteries. <i>New Journal of Chemistry</i> , 2020 , 44, 5965-5971	3.6	1	
4	Wet-Milling Synthesis of Superionic Lithium Argyrodite Electrolytes with Different Concentrations of Lithium Vacancy. <i>ACS Applied Materials & Electrolytes</i> , 2021 , 13, 46644-46649	9.5	1	
3	Bimetallic Hexagonal Layered Nitto Sulfides with High Electrochemical Performance for All-Solid-State Lithium Batteries. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 17061-17067	8.3	1	
2	Sodium Ion Batteries: Toward High Energy Density All Solid-State Sodium Batteries with Excellent Flexibility (Adv. Energy Mater. 12/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070055	21.8	O	
1	One-dimensional NiS-CNT@Li7P3S11 nanocomposites as ionic/electronic additives for LiCoO2 based all-solid-state lithium batteries. <i>Electrochimica Acta</i> , 2021 , 398, 139280	6.7	0	