
Dmitry A Sibarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3460387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Lithium and Selective Inhibitors of Sodium-Calcium Exchanger on Its Transport Currents in Neurons and HEK293 Cells. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2022, 16, 29-37.	0.3	0
2	The Role of Ryanodine and IP3-receptors in Calcium Responses to Tricyclic Antidepressants in Rat Neocortical Neurons. Journal of Evolutionary Biochemistry and Physiology, 2021, 57, 694-703.	0.2	0
3	Tricyclic Antidepressant Structure-Related Alterations in Calcium-Dependent Inhibition and Open-Channel Block of NMDA Receptors. Frontiers in Pharmacology, 2021, 12, 815368.	1.6	7
4	Ethanol inhibition of NMDA receptors in calcium-dependent and –independent modes. Biochemical and Biophysical Research Communications, 2020, 522, 1046-1051.	1.0	9
5	The Importance of Extracellular Potassium for Differentiation of Cerebellar Purkinje Cells in Tissue Cultures. Neuroscience and Behavioral Physiology, 2020, 50, 115-118.	0.2	0
6	Calcium Export from Neurons and Multi-Kinase Signaling Cascades Contribute to Ouabain Neuroprotection in Hyperhomocysteinemia. Biomolecules, 2020, 10, 1104.	1.8	7
7	GluN2 Subunit-Dependent Redox Modulation of NMDA Receptor Activation by Homocysteine. Biomolecules, 2020, 10, 1441.	1.8	6
8	Dual action of amitriptyline on NMDA receptors: enhancement of Ca-dependent desensitization and trapping channel block. Scientific Reports, 2019, 9, 19454.	1.6	16
9	The Neuroprotective Effect of Forskolin and Its Influence of Mitochondrial Dysfunction in Neurons in Primary Rat Cerebellum Cultures. Neuroscience and Behavioral Physiology, 2019, 49, 1096-1099.	0.2	3
10	Developmental Changes of Synaptic and Extrasynaptic NMDA Receptor Expression in Rat Cerebellar Neurons In Vitro. Journal of Molecular Neuroscience, 2018, 64, 300-311.	1.1	9
11	Collapse of Neuronal Energy Balance As a Basis of L-Homocysteine Neurotoxicity. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 360-368.	0.3	3
12	Forskolin As a Neuroprotector and Modulator of Glutamate-Evoked Ca2+ Entry into Cerebellar Neurons. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2018, 12, 390-393.	0.3	2
13	Calcium-Dependent Desensitization of NMDA Receptors. Biochemistry (Moscow), 2018, 83, 1173-1183.	0.7	36
14	Downregulation of calcium-dependent NMDA receptor desensitization by sodium-calcium exchangers: a role of membrane cholesterol. BMC Neuroscience, 2018, 19, 73.	0.8	23
15	High sensitivity of cerebellar neurons to homocysteine is determined by expression of GluN2C and GluN2D subunits of NMDA receptors. Biochemical and Biophysical Research Communications, 2018, 506, 648-652.	1.0	16
16	Pro-nociceptive migraine mediator CGRP provides neuroprotection of sensory, cortical and cerebellar neurons via multi-kinase signaling. Cephalalgia, 2017, 37, 1373-1383.	1.8	25
17	The mechanism of neuroprotection by positive modulation of Ca2+-activated K+ channels of cerebellar neurons in primary culture. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2017, 11, 248-251.	0.3	0
18	Functional Properties of Human NMDA Receptors Associated with Epilepsy-Related Mutations of GluN2A Subunit. Frontiers in Cellular Neuroscience, 2017, 11, 155.	1.8	31

DMITRY A SIBAROV

#	Article	IF	CITATIONS
19	GluN2A Subunit-Containing NMDA Receptors Are the Preferential Neuronal Targets of Homocysteine. Frontiers in Cellular Neuroscience, 2016, 10, 246.	1.8	36
20	Epileptiform curents in rat cortical neurons increase over time of the in vitro culture period. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2016, 10, 338-340.	0.3	0
21	Downregulation of Purkinje Cell Activity by Modulators of Small Conductance Calcium-Activated Potassium Channels In Rat Cerebellum. Acta Naturae, 2016, 8, 91-99.	1.7	4
22	Homocysteine-induced membrane currents, calcium responses and changes in mitochondrial potential in rat cortical neurons. Journal of Evolutionary Biochemistry and Physiology, 2015, 51, 296-304.	0.2	4
23	Inhibition of Plasma Membrane Na/Ca-Exchanger by KB-R7943 or Lithium Reveals Its Role in Ca-Dependent <i>N</i> -methyl-d-aspartate Receptor Inactivation. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 484-495.	1.3	28
24	Characteristics of Postsynaptic Currents in Primary Cultures of Rat Cerebral Cortical Neurons. Neuroscience and Behavioral Physiology, 2015, 45, 431-439.	0.2	1
25	The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. Journal of Neurochemistry, 2014, 129, 264-274.	2.1	67
26	Epileptiform postsynaptic currents in primary culture of rat cortical neurons: Calcium mechanisms. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2014, 8, 169-177.	0.3	2
27	Comparative analysis of changes in membrane currents in neurons and astrocytes in rat hippocampal slices after stimulation of glutamatergic transmission. Doklady Biological Sciences, 2013, 449, 65-67.	0.2	Ο
28	Kainate-induced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium, 2013, 54, 95-104.	1.1	31
29	Dose-dependence of antiapoptotic and toxic action of ouabain in neurons of primary cultures of rat cortex. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2012, 6, 294-299.	0.3	4
30	Na ⁺ ,K ⁺ -ATPase Functionally Interacts with the Plasma Membrane Na ⁺ ,Ca ²⁺ Exchanger to Prevent Ca ²⁺ Overload and Neuronal Apoptosis in Excitotoxic Stress. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 596-607.	1.3	65
31	Mechanisms of heterogeneity of calcium response to kainate and neuronal types in rat cortical primary culture. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2011, 5, 92-100.	0.3	3
32	Blockers of monoamine transporters influence high dopamine concentration uptake in rat brain slices. Doklady Biological Sciences, 2008, 419, 80-82.	0.2	6
33	Reflection of the pattern of cortical activation in the phase structure of the human EEG. Neuroscience and Behavioral Physiology, 2007, 37, 875-888.	0.2	Ο
34	Effects of intranasal administration of epitalon on neuron activity in the rat neocortex. Neuroscience and Behavioral Physiology, 2007, 37, 889-893.	0.2	0
35	Fluorescent Microscopic Study of Epithalon Binding in Maternal and Fetal Rabbit Tissues in Health and under Conditions of Placental Insufficiency. Bulletin of Experimental Biology and Medicine, 2005, 139, 615-618.	0.3	0
36	Effects of pineal-gland peptides on the electric activity of pinealocytes in rats. Doklady Biological Sciences, 2002, 385, 331-333.	0.2	2

#	Article	IF	CITATIONS
37	Epitalon influences pineal secretion in stress-exposed rats in the daytime. Neuroendocrinology Letters, 2002, 23, 452-4.	0.2	5
38	Adaptive morpho-functional changes of pinealocytes in colon tumor bearing rats. Pathophysiology, 1998, 5, 154.	1.0	0
39	Nutritional and Metabolic Factors, Ethanol and Cholesterol, Interact With Calcium-Dependent N-Methyl-D-Aspartate Receptor Inhibition by Tricyclic Antidepressants. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	2