
## Helena Cruz de Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3459975/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                              | IF         | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 1  | Global reprogramming of transcription and metabolism in <scp><i>M</i></scp> <i>edicago<br/>truncatula</i> during progressive drought and after rewatering. Plant, Cell and Environment, 2014,<br>37, 2553-2576.      | 5.7        | 138          |
| 2  | The expression patterns of bromelain and AcCYS1 correlate with blackheart resistance in pineapple fruits submitted to postharvest chilling stress. Journal of Plant Physiology, 2013, 170, 1442-1446.                | 3.5        | 15           |
| 3  | A novel aspartic acid protease gene from pineapple fruit (Ananas comosus): Cloning, characterization<br>and relation to postharvest chilling stress resistance. Journal of Plant Physiology, 2013, 170, 1536-1540.   | 3.5        | 21           |
| 4  | Biochar but not earthworms enhances rice growth through increased protein turnover. Soil Biology and Biochemistry, 2012, 52, 13-20.                                                                                  | 8.8        | 38           |
| 5  | Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biology and Biochemistry, 2010, 42, 1017-1027.                                                           | 8.8        | 138          |
| 6  | Homoglutathione synthetase and glutathione synthetase in drought-stressed cowpea leaves:<br>Expression patterns and accumulation of low-molecular-weight thiols. Journal of Plant Physiology,<br>2010, 167, 480-487. | 3.5        | 18           |
| 7  | An aspartic acid protease from common bean is expressed â€~on call' during water stress and early<br>recovery. Journal of Plant Physiology, 2010, 167, 1606-1612.                                                    | 3.5        | 29           |
| 8  | Drought stress and reactive oxygen species. Plant Signaling and Behavior, 2008, 3, 156-165.                                                                                                                          | 2.4        | 1,093        |
| 9  | (h)GR, beans and drought stress. Plant Signaling and Behavior, 2008, 3, 834-835.                                                                                                                                     | 2.4        | 9            |
| 10 | Dehydrins in Lupinus albus: pattern of protein accumulation in response to drought. Functional Plant<br>Biology, 2008, 35, 85.                                                                                       | 2.1        | 11           |
| 11 | Glutathione Reductase in Leaves of Cowpea: Cloning of Two cDNAs, Expression and Enzymatic Activity under Progressive Drought Stress, Desiccation and Abscisic Acid Treatment. Annals of Botany, 2006, 98, 1279-1287. | 2.9        | 127          |
| 12 | Isolation and characterization of an aspartic proteinase gene from cowpea (Vigna unguiculata L.) Tj ETQq0 0 0 rg                                                                                                     | BT3/Overlo | ock 10 Tf 50 |
|    | Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp] from cotyledonary node                                                                                                                       |            |              |

| 13 | Direct whole plant regeneration of cowpea [Vigna unguiculata (L.) Walp] from cotyledonary node thin cell layer explants. Journal of Plant Physiology, 2002, 159, 1255-1258. | 3.5               | 33                  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 14 | Aspartic protease in leaves of common bean (Phaseolus vulgarisL.) and cowpea (Vigna unguiculataL.) Tj ETQq0 0 (<br>492, 242-246.                                            | ) rgBT /Ov<br>2.8 | verlock 10 Tf<br>84 |
| 15 | Efficient whole plant regeneration of common bean (Phaseolus vulgaris L.) using thin-cell-layer culture and silver nitrate. Plant Science, 2000, 159, 223-232.              | 3.6               | 61                  |
| 16 | Comparison of the physiological responses of Phaseolus vulgaris and Vigna unguiculata cultivars                                                                             | 4.2               | 62                  |

when submitted to drought conditions. Environmental and Experimental Botany, 1998, 40, 197-207. 16

62