Gerhard J Herndl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3459941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial diversity in the deep sea and the underexplored "rare biosphere". Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12115-12120.	3.3	3,297
2	Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Reviews Microbiology, 2010, 8, 593-599.	13.6	1,278
3	Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12317-12322.	3.3	999
4	Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean. Applied and Environmental Microbiology, 2005, 71, 2303-2309.	1.4	530
5	Potential for Chemolithoautotrophy Among Ubiquitous Bacteria Lineages in the Dark Ocean. Science, 2011, 333, 1296-1300.	6.0	510
6	Microbial oceanography of the dark ocean's pelagic realm. Limnology and Oceanography, 2009, 54, 1501-1529.	1.6	437
7	Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nature Communications, 2018, 9, 1430.	5.8	402
8	Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature, 2012, 487, 313-319.	13.7	367
9	Optimization of Terminal-Restriction Fragment Length Polymorphism Analysis for Complex Marine Bacterioplankton Communities and Comparison with Denaturing Gradient Gel Electrophoresis. Applied and Environmental Microbiology, 1999, 65, 3518-3525.	1.4	320
10	Combining Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization and Microautoradiography To Detect Substrate Utilization by Bacteria and Archaea in the Deep Ocean. Applied and Environmental Microbiology, 2004, 70, 4411-4414.	1.4	316
11	Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Nature, 1993, 361, 717-719.	13.7	306
12	The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME Journal, 2016, 10, 2280-2292.	4.4	280
13	Microbial control of the dark end of the biological pump. Nature Geoscience, 2013, 6, 718-724.	5.4	276
14	Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature, 2008, 456, 788-791.	13.7	259
15	Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Molecular Ecology, 2011, 20, 258-274.	2.0	243
16	Dilution limits dissolved organic carbon utilization in the deep ocean. Science, 2015, 348, 331-333.	6.0	230
17	Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science, 2017, 358, 1046-1051.	6.0	229
18	Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20633-20638.	3.3	216

#	Article	IF	CITATIONS
19	Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Molecular Ecology, 2014, 23, 2260-2274.	2.0	194
20	The composition of bacterial communities associated with plastic biofilms differs between different polymers and stages of biofilm succession. PLoS ONE, 2019, 14, e0217165.	1.1	190
21	Extracellular enzymatic activity and secondary production in free-living and marine-snow-associated bacteria. Marine Biology, 1992, 113, 341-347.	0.7	187
22	High phylogenetic diversity in a marine-snow-associated bacterial assemblage. Aquatic Microbial Ecology, 1998, 14, 261-269.	0.9	172
23	Horizontal and vertical complexity of attached and freeâ€living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints. Limnology and Oceanography, 2001, 46, 95-107.	1.6	172
24	Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. FEMS Microbiology Ecology, 2007, 62, 242-257.	1.3	170
25	Contrasting effects of solar radiation on dissolved organic matter and its bioavailability to marine bacterioplankton. Limnology and Oceanography, 1999, 44, 1645-1654.	1.6	169
26	Archaeal <i>amo</i> A gene diversity points to distinct biogeography of ammoniaâ€oxidizing <i>Crenarchaeota</i> in the ocean. Environmental Microbiology, 2013, 15, 1647-1658.	1.8	169
27	Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME Journal, 2017, 11, 362-373.	4.4	169
28	SAR202 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant Dissolved Organic Matter. MBio, 2017, 8, .	1.8	168
29	Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME Journal, 2016, 10, 1051-1063.	4.4	160
30	Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnology and Oceanography, 2006, 51, 1262-1273.	1.6	154
31	Emerging concepts on microbial processes in the bathypelagic ocean – ecology, biogeochemistry, and genomics. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1519-1536.	0.6	153
32	Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1572-1580.	0.6	152
33	Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E400-E408.	3.3	146
34	Viral burst size of heterotrophic prokaryotes in aquatic systems. Journal of the Marine Biological Association of the United Kingdom, 2006, 86, 613-621.	0.4	142
35	Archaeal uptake of enantiomeric amino acids in the meso- and bathypelagic waters of the North Atlantic. Limnology and Oceanography, 2006, 51, 60-69.	1.6	138
36	Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube: the importance of hydrological connectivity. Freshwater Biology, 2003, 48, 220-232.	1.2	136

#	Article	IF	CITATIONS
37	Spatial distribution of <i>Bacteria</i> and <i>Archaea</i> and <i>amo</i> A gene copy numbers throughout the water column of the Eastern Mediterranean Sea. ISME Journal, 2009, 3, 147-158.	4.4	134
38	A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiology Ecology, 2005, 54, 269-280.	1.3	133
39	<i>Epsilonproteobacteria</i> Represent the Major Portion of Chemoautotrophic Bacteria in Sulfidic Waters of Pelagic Redoxclines of the Baltic and Black Seas. Applied and Environmental Microbiology, 2008, 74, 7546-7551.	1.4	131
40	Inhibitory effect of solar radiation on thymidine and leucine incorporation by freshwater and marine bacterioplankton. Applied and Environmental Microbiology, 1997, 63, 4178-4184.	1.4	130
41	Diel cycles in viral infection of bacterioplankton in the North Sea. Aquatic Microbial Ecology, 2004, 35, 207-216.	0.9	129
42	Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnology and Oceanography, 2006, 51, 2131-2144.	1.6	127
43	Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environmental Microbiology, 2005, 7, 1248-1259.	1.8	126
44	Microbes and the Dissipation of Energy and Respiration: From Cells to Ecosystems. Oceanography, 2007, 20, 89-100.	0.5	125
45	A comparison of DNA- and RNA-based clone libraries from the same marine bacterioplankton community. FEMS Microbiology Ecology, 2005, 51, 341-352.	1.3	123
46	Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnology and Oceanography, 2009, 54, 182-193.	1.6	120
47	Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso―and bathypelagic waters of the (sub)tropical Atlantic. Environmental Microbiology, 2009, 11, 1998-2014.	1.8	117
48	Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environmental Microbiology, 2017, 19, 2681-2700.	1.8	117
49	Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton. Limnology and Oceanography, 1998, 43, 877-884.	1.6	110
50	Dissolved organic matter and bacterial production and respiration in the seaâ€surface microlayer of the open Atlantic and the western Mediterranean Sea. Limnology and Oceanography, 2008, 53, 122-136.	1.6	110
51	Relevance of a crenarchaeotal subcluster related to <i>Candidatus</i> Nitrosopumilus maritimus to ammonia oxidation in the suboxic zone of the central Baltic Sea. ISME Journal, 2010, 4, 1496-1508.	4.4	110
52	Organic content and bacterial metabolism in amorphous aggregations of the northern Adriatic Sea. Limnology and Oceanography, 1994, 39, 58-68.	1.6	108
53	Production of exopolymer particles by marine bacterioplankton under contrasting turbulence conditions. Marine Ecology - Progress Series, 1999, 189, 9-16.	0.9	107
54	Viral Abundance, Decay, and Diversity in the Meso- and Bathypelagic Waters of the North Atlantic. Applied and Environmental Microbiology, 2007, 73, 4429-4438.	1.4	105

#	Article	IF	CITATIONS
55	Latitudinal trends of <i>Crenarchaeota</i> and <i>Bacteria</i> in the meso―and bathypelagic water masses of the Eastern North Atlantic. Environmental Microbiology, 2008, 10, 110-124.	1.8	104
56	Comparison of samplers for the biological characterization of the sea surface microlayer. Limnology and Oceanography: Methods, 2004, 2, 213-225.	1.0	101
57	Impact of Virioplankton on Archaeal and Bacterial Community Richness as Assessed in Seawater Batch Cultures. Applied and Environmental Microbiology, 2004, 70, 804-813.	1.4	100
58	Abundance and activity of <i>Chloroflexi</i> â€ŧype SAR202 bacterioplankton in the meso―and bathypelagic waters of the (sub)tropical Atlantic. Environmental Microbiology, 2008, 10, 1903-1911.	1.8	99
59	The Ecology of Amorphous Aggregations (Marine Snow) in the Northern Adriatic Sea:. Marine Ecology, 1988, 9, 79-90.	0.4	93
60	Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect. ISME Journal, 2012, 6, 1566-1577.	4.4	90
61	High dissolved extracellular enzymatic activity in the deep central Atlantic Ocean. Aquatic Microbial Ecology, 2010, 58, 287-302.	0.9	90
62	Formation and significance of transparent exopolymeric particles in the northern Adriatic Sea. Marine Ecology - Progress Series, 1995, 124, 227-236.	0.9	89
63	Differences in the optical and biological reactivity of the humic and nonhumic dissolved organic carbon component in two contrasting coastal marine environments. Limnology and Oceanography, 2000, 45, 1120-1129.	1.6	88
64	Microbial community structure in the sea surface microlayer at two contrasting coastal sites in the northwestern Mediterranean Sea. Aquatic Microbial Ecology, 2006, 42, 91-104.	0.9	87
65	Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean. ISME Journal, 2010, 4, 975-988.	4.4	86
66	Geographic Distribution of Archaeal Ammonia Oxidizing Ecotypes in the Atlantic Ocean. Frontiers in Microbiology, 2016, 7, 77.	1.5	84
67	Interspecific Variability in Sensitivity to UV Radiation and Subsequent Recovery in Selected Isolates of Marine Bacteria. Applied and Environmental Microbiology, 2000, 66, 1468-1473.	1.4	83
68	Photo- and bioreactivity of chromophoric dissolved organic matter produced by marine bacterioplankton. Aquatic Microbial Ecology, 2004, 36, 239-246.	0.9	82
69	Impact of UV Radiation on Bacterioplankton Community Composition. Applied and Environmental Microbiology, 2001, 67, 665-672.	1.4	81
70	Towards a better understanding of microbial carbon flux in the sea*. Aquatic Microbial Ecology, 2008, 53, 21-38.	0.9	81
71	Role of macroscopic particles in deep-sea oxygen consumption. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8287-8291.	3.3	79
72	Photolysis of dimethylsulfide in the northern Adriatic Sea: Dependence on substrate concentration, irradiance and DOC concentration. Marine Chemistry, 1998, 59, 321-331.	0.9	78

#	Article	IF	CITATIONS
73	Terminal-restriction fragment length polymorphism (T-RFLP) screening of a marine archaeal clone library to determine the different phylotypes. Journal of Microbiological Methods, 2001, 44, 159-172.	0.7	78
74	Abundance and activity of major groups of prokaryotic plankton in the coastal North Sea during spring and summer. Aquatic Microbial Ecology, 2006, 45, 237-246.	0.9	77
75	Response of bacterioplankton to iron fertilization in the Southern Ocean. Limnology and Oceanography, 2004, 49, 799-808.	1.6	76
76	Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean. Frontiers in Microbiology, 2014, 5, 557.	1.5	76
77	Microbial activities and the transformation of organic matter within mucilaginous material. Science of the Total Environment, 1995, 165, 33-42.	3.9	75
78	Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa. Marine Biology, 1986, 90, 363-369.	0.7	74
79	Relationship between Bacterioplankton Richness, Respiration, and Production in the Southern North Sea. Applied and Environmental Microbiology, 2005, 71, 2260-2266.	1.4	73
80	The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool. Nature Reviews Microbiology, 2011, 9, 555-555.	13.6	73
81	Seasonal dynamics of bacterial growth efficiencies in relation to phytoplankton in the southern North Sea. Aquatic Microbial Ecology, 2005, 39, 7-16.	0.9	73
82	Changes in bacterial βâ€glucosidase diversity during a coastal phytoplankton bloom. Limnology and Oceanography, 2002, 47, 594-599.	1.6	72
83	Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4823-4830.	3.3	72
84	Zooplankton activity fueling the microbial loop: Differential growth response of bacteria from oligotrophic and eutrophic waters. Limnology and Oceanography, 1992, 37, 1087-1092.	1.6	71
85	Enhanced heterotrophic activity in the surface microlayer of the Mediterranean Sea. Aquatic Microbial Ecology, 2005, 39, 293-302.	0.9	71
86	Development and deployment of a pointâ€source digital inline holographic microscope for the study of plankton and particles to a depth of 6000 m. Limnology and Oceanography: Methods, 2013, 11, 28-40.	1.0	71
87	Ammoniaâ€oxidizing archaea release a suite of organic compounds potentially fueling prokaryotic heterotrophy in the ocean. Environmental Microbiology, 2019, 21, 4062-4075.	1.8	71
88	Complexity of Bacterial Communities in a River-Floodplain System (Danube, Austria). Applied and Environmental Microbiology, 2005, 71, 609-620.	1.4	70
89	Diel periodicity of bacterioplankton in the euphotic zone of the subtropical Atlantic Ocean. Marine Ecology - Progress Series, 2000, 201, 13-25.	0.9	70
90	Ultraviolet-B radiation and bacterial metabolism in coastal waters. Aquatic Microbial Ecology, 1995, 9, 111-116.	0.9	68

#	Article	IF	CITATIONS
91	Spatial and diurnal dynamics of dissolved organic matter (DOM) fluorescence and H 2 O 2 and the photochemical oxygen demand of surface water DOM across the subtropical Atlantic Ocean. Limnology and Oceanography, 2001, 46, 632-643.	1.6	68
92	Quantifying Substrate Uptake by Individual Cells of Marine Bacterioplankton by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization Combined with Microautoradiography. Applied and Environmental Microbiology, 2006, 72, 7022-7028.	1.4	64
93	Significance of nonâ€sinking particulate organic carbon and dark CO ₂ fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic. Geophysical Research Letters, 2010, 37, .	1.5	64
94	Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1892-1902.	0.8	64
95	Strong coast–ocean and surface–depth gradients in prokaryotic assemblage structure and activity in a coastal transition zone region. Aquatic Microbial Ecology, 2007, 50, 63-74.	0.9	64
96	Major shift in bacterioplankton utilization of enantiomeric amino acids between surfacewaters and the ocean's interior. Limnology and Oceanography, 2003, 48, 755-763.	1.6	63
97	Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Science Advances, 2020, 6, eaaz4354.	4.7	63
98	High atmosphere-ocean exchange of organic carbon in the NE subtropical Atlantic. Geophysical Research Letters, 2005, 32, .	1.5	60
99	Viral and Flagellate Control of Prokaryotic Production and Community Structure in Offshore Mediterranean Waters. Applied and Environmental Microbiology, 2009, 75, 4801-4812.	1.4	60
100	Bacterial activity along a trophic gradient. Microbial Ecology, 1992, 24, 243-257.	1.4	59
101	Taurine Is a Major Carbon and Energy Source for Marine Prokaryotes in the North Atlantic Ocean off the Iberian Peninsula. Microbial Ecology, 2019, 78, 299-312.	1.4	59
102	Ultrastructure of marine snow. I. Transmission electron microscopy methodology. Marine Ecology - Progress Series, 1996, 135, 289-298.	0.9	59
103	Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water. Environmental Microbiology, 2016, 18, 2052-2063.	1.8	58
104	Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum. Scientific Reports, 2016, 6, 22633.	1.6	58
105	Metagenomic insights into zooplanktonâ€associated bacterial communities. Environmental Microbiology, 2018, 20, 492-505.	1.8	57
106	Proteomic Response of Three Marine Ammonia-Oxidizing Archaea to Hydrogen Peroxide and Their Metabolic Interactions with a Heterotrophic Alphaproteobacterium. MSystems, 2019, 4, .	1.7	57
107	Synechococcus and Prochlorococcus cell death induced by UV radiation and the penetration of lethal UVR in the Mediterranean Sea. Marine Ecology - Progress Series, 2010, 399, 27-37.	0.9	57
108	Heterotrophic prokaryotic production in ultraoligotrophic alpine karst aquifers and ecological implications. FEMS Microbiology Ecology, 2009, 68, 287-299.	1.3	55

#	Article	IF	CITATIONS
109	Ectoenzymatic Activity and Uptake of Monomers in Marine Bacterioplankton Described by a Biphasic Kinetic Model. Microbial Ecology, 1999, 37, 36-48.	1.4	54
110	Conservation of dissolved organic matter molecular composition during mixing of the deep water masses of the northeast Atlantic Ocean. Marine Chemistry, 2015, 177, 288-297.	0.9	51
111	Deposit Feeding and Sediment:. Marine Ecology, 1991, 12, 163-174.	0.4	49
112	Role of ultraviolet-B radiation on photochemical and microbial oxygen consumption in a humic-rich shallow lake. Limnology and Oceanography, 1997, 42, 950-960.	1.6	49
113	Biogeochemical relationships between ultrafiltered dissolved organic matter and picoplankton activity in the Eastern Mediterranean Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1460-1477.	0.6	48
114	Deep-sea bacterial communities in sediments and guts of deposit-feeding holothurians in Portuguese canyons (NE Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 1834-1843.	0.6	47
115	Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME Journal, 2010, 4, 1431-1442.	4.4	47
116	Prokaryotic Responses to Ammonium and Organic Carbon Reveal Alternative CO2 Fixation Pathways and Importance of Alkaline Phosphatase in the Mesopelagic North Atlantic. Frontiers in Microbiology, 2016, 7, 1670.	1.5	47
117	Ultrastructure of marine snow. II. Microbiological considerations. Marine Ecology - Progress Series, 1996, 135, 299-308.	0.9	47
118	Extracting DNA from ocean microplastics: a method comparison study. Analytical Methods, 2017, 9, 1521-1526.	1.3	46
119	Bacterial Versus Archaeal Origin of Extracellular Enzymatic Activity in the Northeast Atlantic Deep Waters. Microbial Ecology, 2013, 65, 277-288.	1.4	45
120	Contribution of Crenarchaeota and Euryarchaeota to the prokaryotic plankton in the coastal northwestern Black Sea. Journal of Plankton Research, 2007, 29, 699-706.	0.8	44
121	Crustacean zooplankton release copious amounts of dissolved organic matter as taurine in the ocean. Limnology and Oceanography, 2017, 62, 2745-2758.	1.6	44
122	Niche Differentiation of Aerobic and Anaerobic Ammonia Oxidizers in a High Latitude Deep Oxygen Minimum Zone. Frontiers in Microbiology, 2019, 10, 2141.	1.5	44
123	Regulation of aquatic microbial processes: the â€~microbial loop' of the sunlit surface waters and the dark ocean dissected. Aquatic Microbial Ecology, 2008, 53, 59-68.	0.9	44
124	Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern north Atlantic ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 96, 28-37.	0.6	43
125	Contribution of <i>Crenarchaeota</i> and <i>Bacteria</i> to autotrophy in the North Atlantic interior. Environmental Microbiology, 2011, 13, 1524-1533.	1.8	42
126	Comparison of Deep-Water Viromes from the Atlantic Ocean and the Mediterranean Sea. PLoS ONE, 2014. 9. e100600.	1.1	42

#	Article	IF	CITATIONS
127	Diversity of Archaea and detection of crenarchaeotal amoA genes in the rivers Rhine and Têt. Aquatic Microbial Ecology, 2009, 55, 189-201.	0.9	42
128	Linkage between copepods and bacteria in the North Atlantic Ocean. Aquatic Microbial Ecology, 2014, 72, 215-225.	0.9	41
129	Seasonal variation in marine-snow-associated and ambient-water prokaryotic communities in the northern Adriatic Sea. Aquatic Microbial Ecology, 2014, 73, 211-224.	0.9	41
130	Clobal Structuring of Phylogenetic and Functional Diversity of Pelagic Fungi by Depth and Temperature. Frontiers in Marine Science, 2019, 6, .	1.2	39
131	Jellyfish-Associated Microbiome in the Marine Environment: Exploring Its Biotechnological Potential. Marine Drugs, 2019, 17, 94.	2.2	39
132	Role of mesoscale cyclonic eddies in the distribution and activity of Archaea and Bacteria in the South China Sea. Aquatic Microbial Ecology, 2009, 56, 65-79.	0.9	39
133	Prokaryotic carbon utilization in the dark ocean: growth efficiency, leucine-to-carbon conversion factors, and their relation. Aquatic Microbial Ecology, 2010, 60, 227-232.	0.9	39
134	Largeâ€scale distribution of microbial and viral populations in the <scp>S</scp> outh <scp>A</scp> tlantic <scp>O</scp> cean. Environmental Microbiology Reports, 2016, 8, 305-315.	1.0	38
135	Linking bacterial richness with viral abundance and prokaryotic activity. Limnology and Oceanography, 2005, 50, 968-977.	1.6	37
136	Prokaryotic community analysis with CARD-FISH in comparison with FISH in ultra-oligotrophic ground- and drinking water. Journal of Applied Microbiology, 2007, 103, 871-881.	1.4	37
137	Changes in viral and bacterial communities during the iceâ€melting season in the coastal Arctic (Kongsfjorden, Nyâ€Ãlesund). Environmental Microbiology, 2011, 13, 1827-1841.	1.8	37
138	Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production. Frontiers in Marine Science, 2016, 3, .	1.2	37
139	Correcting a major error in assessing organic carbon pollution in natural waters. Science Advances, 2021, 7, .	4.7	37
140	Reviews and syntheses: Heterotrophic fixation of inorganic carbon – significant but invisible flux in environmental carbon cycling. Biogeosciences, 2021, 18, 3689-3700.	1.3	37
141	Spatial patterns of bacterial abundance, activity and community composition in relation to water masses in the eastern Mediterranean Sea. Aquatic Microbial Ecology, 2010, 59, 185-195.	0.9	36
142	Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates?. Biogeosciences, 2019, 16, 3793-3799.	1.3	36
143	Dynamics and diversity of newly produced virioplankton in the North Sea. ISME Journal, 2008, 2, 924-936.	4.4	35
144	Mesoscale variability modulates seasonal changes in the trophic structure of nano- and picoplankton communities across the NW Africa-Canary Islands transition zone. Progress in Oceanography, 2009, 83, 180-188.	1.5	35

#	Article	IF	CITATIONS
145	Evidence of enhanced microbial activity in the interstitial space of branched corals: possible implications for coral metabolism. Coral Reefs, 1989, 7, 179-184.	0.9	34
146	Macroecological patterns of archaeal ammonia oxidizers in the Atlantic Ocean. Molecular Ecology, 2015, 24, 4931-4942.	2.0	34
147	Microbiome variation in corals with distinct depth distribution ranges across a shallow–mesophotic gradient (15–85Âm). Coral Reefs, 2017, 36, 447-452.	0.9	34
148	Seasonal dynamics of dissolved organic matter and microbial activity in the coastal North Sea. Aquatic Microbial Ecology, 2010, 60, 85-95.	0.9	33
149	Temporal dynamics in the free-living bacterial community composition in the coastal North Sea. FEMS Microbiology Ecology, 2013, 83, 413-424.	1.3	31
150	What Is Refractory Organic Matter in the Ocean?. Frontiers in Marine Science, 2021, 8, .	1.2	31
151	Title is missing!. Plant Ecology, 1997, 128, 43-51.	0.7	30
152	Enzyme promiscuity in natural environments: alkaline phosphatase in the ocean. ISME Journal, 2021, 15, 3375-3383.	4.4	30
153	Archaeal and Bacterial Communities Associated with the Surface Mucus of Caribbean Corals Differ in Their Degree of Host Specificity and Community Turnover Over Reefs. PLoS ONE, 2016, 11, e0144702.	1.1	30
154	Seasonal and spatial distribution of dissolved and particulate organic carbon and bacteria in the bank of an impounding reservoir on the Enns River, Austria. Freshwater Biology, 2001, 46, 997-1016.	1.2	29
155	Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus. Environmental Chemistry, 2016, 13, 252.	0.7	28
156	Towards Integrating Evolution, Metabolism, and Climate Change Studies of Marine Ecosystems. Trends in Ecology and Evolution, 2019, 34, 1022-1033.	4.2	28
157	Potential and expression of carbohydrate utilization by marine fungi in the global ocean. Microbiome, 2021, 9, 106.	4.9	28
158	Potential microbial utilization rates of sublittoral gastropod mucus trails. Limnology and Oceanography, 1989, 34, 780-784.	1.6	27
159	Relationship of Geographic Distance, Depth, Temperature, and Viruses with Prokaryotic Communities in the Eastern Tropical Atlantic Ocean. Microbial Ecology, 2008, 56, 383-389.	1.4	27
160	Microbial Biomass Dynamics Along a Trophic Gradient at the Atlantic Barrier Reef off Belize (Central) Tj ETQq0 0 (0 rgBT /Ov	erlock 10 Tf 5
161	Influence of turbulence on bacterial production in the sea. Limnology and Oceanography, 1995, 40,	1.6	26

162	Host Differentiation and Compartmentalization of Microbial Communities in the Azooxanthellate Cupcorals Tubastrea coccinea and Rhizopsammia goesi in the Caribbean. Frontiers in Marine Science, 2018, 5, .	1.2	25	
-----	---	-----	----	--

#	Article	IF	CITATIONS
163	Potential impacts of black carbon on the marine microbial community. Aquatic Microbial Ecology, 2015, 75, 27-42.	0.9	25
164	Fully automated spectrophotometric approach to determine oxygen concentrations in seawater via continuous-flow analysis. Limnology and Oceanography: Methods, 2006, 4, 358-366.	1.0	24
165	Assessing the Diversity of Marine Bacterial β-Glucosidases by Capillary Electrophoresis Zymography. Applied and Environmental Microbiology, 2001, 67, 4896-4900.	1.4	23
166	Modelling viral impact on bacterioplankton in the North Sea using artificial neural networks. Environmental Microbiology, 2005, 7, 881-893.	1.8	23
167	Major Effect of Hydrogen Peroxide on Bacterioplankton Metabolism in the Northeast Atlantic. PLoS ONE, 2013, 8, e61051.	1.1	23
168	Characteristics and Diversity of β- <scp>d</scp> -Glucosidase (EC 3.2.1.21) Activity in Marine Snow. Applied and Environmental Microbiology, 1994, 60, 807-813.	1.4	23
169	Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 78, 58-69.	0.6	22
170	High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin). Environmental Microbiology, 2018, 20, 602-611.	1.8	22
171	Bacteria in the coelenteron of Anthozoa: Control of coelenteric bacterial density by the coelenteric fluid. Journal of Experimental Marine Biology and Ecology, 1985, 93, 115-130.	0.7	21
172	Microbial Functioning and Community Structure Variability in the Mesopelagic and Epipelagic Waters of the Subtropical Northeast Atlantic Ocean. Applied and Environmental Microbiology, 2012, 78, 3309-3316.	1.4	21
173	Abundance and distribution of archaeal acetyl-CoA/propionyl-CoA carboxylase genes indicative for putatively chemoautotrophic Archaea in the tropical Atlantic's interior. FEMS Microbiology Ecology, 2013, 84, 461-473.	1.3	21
174	Comparison between MICRO–CARD–FISH and 16 S rRNA gene clone libraries to assess the active versus total bacterial community in the coastal A rctic. Environmental Microbiology Reports, 2013, 5, 272-281.	1.0	21
175	Springtime dynamics, productivity and activity of prokaryotes in two Arctic fjords. Polar Biology, 2016, 39, 1749-1763.	0.5	21
176	Highly variable mRNA halfâ€life time within marine bacterial taxa and functional genes. Environmental Microbiology, 2019, 21, 3873-3884.	1.8	21
177	Viral Communities in the Global Deep Ocean Conveyor Belt Assessed by Targeted Viromics. Frontiers in Microbiology, 2019, 10, 1801.	1.5	21
178	Putative degraders of lowâ€density polyethyleneâ€derived compounds are ubiquitous members of plasticâ€associated bacterial communities in the marine environment. Environmental Microbiology, 2020, 22, 4779-4793.	1.8	21
179	Sunlight Effects on the Osmotrophic Uptake of DMSP-Sulfur and Leucine by Polar Phytoplankton. PLoS ONE, 2012, 7, e45545.	1.1	21
180	The importance of jellyfish–microbe interactions for biogeochemical cycles in the ocean. Limnology and Oceanography, 2021, 66, 2011-2032.	1.6	20

C

#	Article	IF	CITATIONS
181	Prokaryotic Life in the Deep Ocean's Water Column. Annual Review of Marine Science, 2023, 15, 461-483.	5.1	20
182	Bacterial metabolism in the River Danube: parameters influencing bacterial production. Freshwater Biology, 1995, 34, 601-616.	1.2	19
183	Bacterial Colonization and Ectoenzymatic Activity in Phytoplankton-Derived Model Particles. Part II. Cleavage and Uptake of Carbohydrates. Microbial Ecology, 1998, 36, 66-74.	1.4	19
184	Seasonal dynamics of marine snowâ€associated and freeâ€living demethylating bacterial communities in the coastal northern Adriatic Sea. Environmental Microbiology Reports, 2019, 11, 699-707.	1.0	19
185	Microbial Processing of Jellyfish Detritus in the Ocean. Frontiers in Microbiology, 2020, 11, 590995.	1.5	19
186	Influence of wastewater treatment on the microbial ecology of a large, temperate river system ? the Danube River. Hydrobiologia, 1996, 321, 205-218.	1.0	18
187	Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water. Global Biogeochemical Cycles, 2013, 27, 1151-1162.	1.9	18
188	Resolving the paradox: Continuous cell-free alkaline phosphatase activity despite high phosphate concentrations. Marine Chemistry, 2019, 214, 103671.	0.9	18
189	Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses. Frontiers in Microbiology, 2014, 5, 264.	1.5	17
190	Role of ultraviolet-B radiation on bacterioplankton and the availability of dissolved organic matter. , 1997, , 42-51.		17
191	Phylogenetically and functionally diverse microorganisms reside under the Ross Ice Shelf. Nature Communications, 2022, 13, 117.	5.8	17
192	Role of bacteria in decomposition of faecal pellets egested by the epiphyte-grazing gastropod Gibbula umbilicaris. Marine Biology, 1986, 92, 417-424.	0.7	16
193	DIEL IN SITU PICOPHYTOPLANKTON CELL DEATH CYCLES COUPLED WITH CELL DIVISION ¹ . Journal of Phycology, 2011, 47, 1247-1257.	1.0	16
194	Spatial patterns of bacterial and archaeal communities along the Romanche Fracture Zone (tropical) Tj ETQqO	0 0 rgBT /C	overlock 10 Tf
195	Differential Response of Cafeteria roenbergensis to Different Bacterial and Archaeal Prey Characteristics. Microbial Ecology, 2019, 78, 1-5.	1.4	16
196	Prevalence of strong vertical CO ₂ and O ₂ variability in the top meters of the ocean. Global Biogeochemical Cycles, 2013, 27, 941-949.	1.9	15
197	Seasonal variations in extracellular enzymatic activity in marine snow-associated microbial communities and their impact on the surrounding water. FEMS Microbiology Ecology, 2018, 94, .	1.3	15
198	Abundance of eukaryotic microbes in the deep subtropical North Atlantic. Aquatic Microbial Ecology, 2011, 65, 103-115.	0.9	15

#	Article	IF	CITATIONS
199	The role of sedimentary biogeochemistry in the formation of hypoxia in shallow coastal waters (Gulf) Tj ETQq1 1	0.784314 0.8	rgBT /Over
200	Laboratory-made particles as a useful approach to analyse microbial processes in marine macroaggregates. FEMS Microbiology Ecology, 1998, 26, 325-334.	1.3	14
201	Mixing alters the lytic activity of viruses in the dark ocean. Ecology, 2018, 99, 700-713.	1.5	14
202	Bacterioplankton community composition in nearshore waters of the NW Black Sea during consecutive diatom and coccolithophorid blooms. Aquatic Sciences, 2007, 69, 413-418.	0.6	13
203	Elemental composition of dissolved organic matter and bacterioplankton production in the Faroe-Shetland Channel (North Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 85-97.	0.6	12
204	High viral abundance as a consequence of low viral decay in the Baltic Sea redoxcline. PLoS ONE, 2017, 12, e0178467.	1.1	12
205	Relative Importance of Phosphodiesterase vs. Phosphomonoesterase (Alkaline Phosphatase) Activities for Dissolved Organic Phosphorus Hydrolysis in Epi- and Mesopelagic Waters. Frontiers in Earth Science, 2020, 8, .	0.8	12
206	Deposit Feeding and Sediment: Marine Ecology, 1991, 12, 175-184.	0.4	11
207	Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep oceanâ€. Science, 2015, 350, 1483-1483.	6.0	11
208	Seasonal Dynamics of Epiphytic Microbial Communities on Marine Macrophyte Surfaces. Frontiers in Microbiology, 2021, 12, 671342.	1.5	11
209	Floating mucilage in the Northern Adriatic Sea: the potential of a microbial ecological approach to solve the "mystery― , 1992, , 525-538.		11
210	Microscale distribution of bacterioplankton in relation to phytoplankton: Results from 1-nl samples. Limnology and Oceanography, 1996, 41, 1577-1582.	1.6	10
211	Direct observations of diel biological CO ₂ fixation on the Scotian Shelf, northwestern Atlantic Ocean. Biogeosciences, 2012, 9, 2301-2309.	1.3	10
212	Nitrogen Isotope Fractionation During Archaeal Ammonia Oxidation: Coupled Estimates From Measurements of Residual Ammonium and Accumulated Nitrite. Frontiers in Microbiology, 2020, 11, 1710.	1.5	10
213	Role of Ultraviolet Radiation on Bacterioplankton Activity. , 1997, , 143-I.		10
214	Functional Seasonality of Free-Living and Particle-Associated Prokaryotic Communities in the Coastal Adriatic Sea. Frontiers in Microbiology, 2020, 11, 584222.	1.5	9
215	Differentiating leucine incorporation of Archaea and Bacteria throughout the water column of the eastern Atlantic using metabolic inhibitors. Aquatic Microbial Ecology, 2012, 66, 247-256.	0.9	9
216	Microbial activity under the ice cover of the shallow Neusiedler See (Austria, Central Europe). Hydrobiologia, 1997, 357, 173-184.	1.0	8

#	Article	IF	CITATIONS
217	Adapting an Ergosterol Extraction Method with Marine Yeasts for the Quantification of Oceanic Fungal Biomass. Journal of Fungi (Basel, Switzerland), 2021, 7, 690.	1.5	8
218	Phylogeny and Metabolic Potential of the Candidate Phylum SAR324. Biology, 2022, 11, 599.	1.3	8
219	Dynamics in bacterial surface properties of a natural bacterial community in the coastal North Sea during a spring phytoplankton bloom. FEMS Microbiology Ecology, 2005, 53, 285-294.	1.3	7
220	Seasonality combined with the orientation of surfaces influences the microbial community structure of biofilms in the deep Mediterranean Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 171, 104703.	0.6	7
221	Microbial Consortiums of Putative Degraders of Low-Density Polyethylene-Associated Compounds in the Ocean. MSystems, 2022, 7, e0141521.	1.7	7
222	An overview of the structure and function of microbial biofilms, with special emphasis on heterotrophic aquatic microbial communities. African Journal of Aquatic Science, 2011, 36, 1-10.	0.5	6
223	Dynamics of environmental conditions during the decline of a <i>Cymodocea nodosa</i> meadow. Biogeosciences, 2020, 17, 3299-3315.	1.3	6
224	Diel and spatial variations in bacterial density in a stratified water column of the gulf of trieste. Progress in Oceanography, 1988, 21, 139-146.	1.5	5
225	Hiding in Plain Sight: The Globally Distributed Bacterial Candidate Phylum PAUC34f. Frontiers in Microbiology, 2020, 11, 376.	1.5	5
226	Effects of the Invasion of Caulerpa cylindracea in a Cymodocea nodosa Meadow in the Northern Adriatic Sea. Frontiers in Marine Science, 2020, 7, .	1.2	5
227	A Study of Biofilm in a Second Order Tropical Stream, Njoro River, Kenya: First Results. International Review of Hydrobiology, 2003, 88, 372-384.	0.5	4
228	Uneven host cell growth causes lysogenic virus induction in the Baltic Sea. PLoS ONE, 2019, 14, e0220716.	1.1	4
229	Mesozooplankton taurine production and prokaryotic uptake in the northern Adriatic Sea. Limnology and Oceanography, 2020, 65, 2730-2747.	1.6	4
230	Extracellular Enzymatic Activities of Oceanic Pelagic Fungal Strains and the Influence of Temperature. Journal of Fungi (Basel, Switzerland), 2022, 8, 571.	1.5	4
231	Selective DNA and Protein Isolation From Marine Macrophyte Surfaces. Frontiers in Microbiology, 2021, 12, 665999.	1.5	3
232	Microbes mediating the sulfur cycle in the Atlantic Ocean and their link to chemolithoautotrophy. Environmental Microbiology, 2021, 23, 7152-7167.	1.8	3
233	Dialysis Bag Incubation as a Nonradiolabeling Technique to Estimate Bacterioplankton Production In Situ. , 2018, , 553-556.		3
234	Lifting the Lid: Nitrifying Archaea Sustain Diverse Microbial Communities Below the Ross Ice Shelf. SSRN Electronic Journal, 0, , .	0.4	3

#	Article	IF	CITATIONS
235	Erythromycin and GC7 fail as domain-specific inhibitors for bacterial and archaeal activity in the open ocean. Aquatic Microbial Ecology, 2016, 77, 99-110.	0.9	2
236	Estimating Carbon Flux From Optically Recording Total Particle Volume at Depths Below the Primary Pycnocline. Frontiers in Marine Science, 2019, 6, .	1.2	2
237	Recognizing the complexity of soil organic carbon dynamics in vegetated coastal habitats. Global Change Biology, 2021, 27, 3-4.	4.2	1
238	Contribution of Crenarchaeota and Euryarchaeota to the prokaryotic plankton in the coastal northwestern Black Sea. Journal of Plankton Research, 2007, 30, 93-93.	0.8	0