Hsiao-Hsuan Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3459823/publications.pdf

Version: 2024-02-01

57 papers	655 citations	14 h-index	610901 24 g-index
57 all docs	57 docs citations	57 times ranked	812 citing authors

#	Article	IF	Citations
1	Effect of capping layer on the ferroelectricity of hafnium oxide. Thin Solid Films, 2022, 753, 139274.	1.8	3
2	Performance investigation of hafnium-oxide negative capacitance transistor with remote nitrogen plasma treatment. Thin Solid Films, 2022, 755, 139345.	1.8	0
3	Electrical Characteristics Investigation of Ferroelectric Memories Using Stacked and Mixed Hafnium Zirconium Oxides. Thin Solid Films, 2022, , 139395.	1.8	1
4	Impact of stress and doping effects on the polarization behavior and electrical characteristics of hafnium–zirconium oxides. Ceramics International, 2021, 47, 2864-2868.	4.8	4
5	Investigation on the La Replacement and Little Additive Modification of High-Performance Permanent Magnetic Strontium-Ferrite. Processes, 2021, 9, 1034.	2.8	2
6	Integration of Dielectric and Ferroelectric Hafnium Aluminum Oxides for Thinâ€Film Transistor Applications. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2070041.	2.4	0
7	Integration of Dielectric and Ferroelectric Hafnium Aluminum Oxides for Thinâ€Film Transistor Applications. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000258.	2.4	O
8	Preparation and magnetic properties of high performance Ca–Sr based M-type hexagonal ferrites. Results in Materials, 2020, 8, 100150.	1.8	3
9	Experimental Investigation of Thermal Annealing and Ferroelectric Capacitor Area Effects for Hafnium-Zirconium Oxide Devices. Coatings, 2020, 10, 733.	2.6	4
10	Organic small molecule-based RRAM for data storage and neuromorphic computing. Journal of Materials Chemistry C, 2020, 8, 12714-12738.	5.5	76
11	A comparative study of metal-ferroelectric-metal devices using doped- and stacked-hafnium zirconium oxides. Thin Solid Films, 2020, 701, 137927.	1.8	3
12	Gammaâ€Ray Irradiation Effect on Ferroelectric Devices with Hafnium Aluminum Oxides. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900414.	2.4	0
13	Stabilizing Ferroelectric Domain Switching of Hafnium Aluminum Oxide Using Metal Nitride Electrode Engineering. ECS Journal of Solid State Science and Technology, 2019, 8, P553-P556.	1.8	3
14	Effect of Plasma Fluorination in p-Type SnO TFTs: Experiments, Modeling, and Simulation. IEEE Transactions on Electron Devices, 2019, 66, 1314-1321.	3.0	31
15	Investigation of Phase Transformation in HfO2 Ferroelectric Capacitor by Means of a ZrO2 Capping Layer. , 2019, , .		4
16	Ferroelectric Characterization of Hafnium-Oxide-Based Ferroelectric Memories with Remote Nitrogen Plasma Treatments., 2019,,.		0
17	Forming-Free SiGeOx/TiOy Resistive Random Access Memories Featuring Large Current Distribution Windows. Journal of Nanoscience and Nanotechnology, 2019, 19, 7916-7919.	0.9	4
18	Progress and challenges in p-type oxide-based thin film transistors. Nanotechnology Reviews, 2019, 8, 422-443.	5.8	42

#	Article	IF	Citations
19	Impact of Zirconium Doping on Steep Subthreshold Switching of Negative Capacitance Hafnium Oxide Based Transistors. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800573.	2.4	8
20	Implementation of Dopant-Free Hafnium Oxide Negative Capacitance Field-Effect Transistor. IEEE Transactions on Electron Devices, 2019, 66, 825-828.	3.0	25
21	Investigation of Gate-Stress Engineering in Negative Capacitance FETs Using Ferroelectric Hafnium Aluminum Oxides. IEEE Transactions on Electron Devices, 2019, 66, 1082-1086.	3.0	17
22	Improved Negativeâ€Capacitance Switch of Ferroelectric Field Effect Transistor Using Defect Passivation Engineering. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800493.	2.4	4
23	Interface engineering of ferroelectric negative capacitance FET for hysteresis-free switch and reliability improvement., 2018,,.		6
24	Investigation of Polarization Hysteresis and Transient Current Switching in Ferroelectric Aluminum-Doped Hafnium Oxides. , $2018, , .$		3
25	Improved Thermal Stability and Stress Immunity in Highly Scalable Junctionless FETs Using Enhanced-Depletion Channels. ECS Journal of Solid State Science and Technology, 2018, 7, Q242-Q245.	1.8	3
26	Fast Low-Temperature Plasma Process for the Application of Flexible Tin-Oxide-Channel Thin Film Transistors. IEEE Nanotechnology Magazine, 2017, 16, 876-879.	2.0	18
27	Investigation of Double-Snapback Characteristic in Resistor-Triggered SCRs Stacking Structure. IEEE Transactions on Electron Devices, 2017, 64, 4200-4205.	3.0	16
28	High holding voltage segmentation stacking silicon-controlled-rectifier structure with field implant as body ties blocking layer. Japanese Journal of Applied Physics, 2016, 55, 04ER10.	1.5	1
29	Bipolar Conduction in Tin-Oxide Semiconductor Channel Treated by Oxygen Plasma for Low-Power Thin-Film Transistor Application. Journal of Display Technology, 2016, 12, 224-227.	1.2	14
30	On the variability of threshold voltage window in gate-injection versatile memories with Sub-60mV/dec subthreshold swing and 1012-cycling endurance. , 2016, , .		0
31	Gettering Effect Induced by Oxygen-Deficient Titanium Oxide in InZnO and InGaZnO Channel Systems for Low-Power Display Applications. Journal of Display Technology, 2016, 12, 219-223.	1.2	7
32	Impact of nanoscale polarization relaxation on endurance reliability of one-transistor hybrid memory using combined storage mechanisms. , 2015 , , .		3
33	Correlation of thermal annealing effect, crystallinity and electrical characteristics in c-axis crystallized InGaZnO thin-film transistors. Journal of Alloys and Compounds, 2015, 643, S187-S192.	5 . 5	5
34	Amorphous Titanium Oxide Semiconductors on Quasi-Crystal-Like InGaZnO Channels for Thin Film Transistor Applications. Journal of Display Technology, 2015, 11, 506-511.	1.2	1
35	Improvement of dielectric flexibility and electrical properties of mechanically flexible thin film devices using titanium oxide materials fabricated at a very low temperature of $100 \text{\^{A}}^{\circ}\text{C}$. Journal of Alloys and Compounds, 2015, 643, S133-S136.	5.5	13
36	Temperature-Dependent Transfer Characteristics of Low Turn-On Voltage InGaZnO Metal-Oxide Devices With Thin Titanium Oxide Capping Layers. Journal of Display Technology, 2015, 11, 512-517.	1.2	3

#	Article	IF	CITATIONS
37	Structural and electrical characteristics of thin film transistor employing an oriented crystalline InGaZnO channel. Japanese Journal of Applied Physics, 2015, 54, 04DF05.	1.5	2
38	Low power 1T DRAM/NVM versatile memory featuring steep sub-60-mV/decade operation, fast 20-ns speed, and robust $85\&\#x00B0$; C-extrapolated $10<\sup 16$ endurance., 2015 ,,.		14
39	Interface polarization fluctuation effect of ferroelectric hafnium-zirconium-oxide ferroelectric memory with nearly ideal subthreshold slope. , 2015 , , .		1
40	High Mobility Bilayer Metal–Oxide Thin Film Transistors Using Titanium-Doped InGaZnO. IEEE Electron Device Letters, 2014, 35, 87-89.	3.9	56
41	High Mobility Field-Effect Thin Film Transistor Using Room-Temperature High- <formula formulatype="inline"><tex notation="TeX">\$kappa\$</tex> </formula> Gate Dielectrics. Journal of Display Technology, 2014, 10, 875-881.	1.2	10
42	Improved highâ€temperature switching characteristics of Y ₂ O ₃ /TiO <i>_×</i> resistive memory through carrier depletion effect. Physica Status Solidi - Rapid Research Letters, 2014, 8, 431-435.	2.4	8
43	An Oxygen Gettering Scheme for Improving Device Mobility and Subthreshold Swing of InGaZnO-Based Thin-Film Transistor. IEEE Nanotechnology Magazine, 2014, 13, 933-938.	2.0	14
44	Amorphous bilayer TiO2–InGaZnO thin film transistors with low drive voltage. Solid-State Electronics, 2014, 99, 51-54.	1.4	12
45	Low power resistive random access memory using interface-engineered dielectric stack of SiOx/a-Si/TiOy with 1D1R-like structure. Current Applied Physics, 2014, 14, 139-143.	2.4	10
46	Fully room-temperature IGZO thin film transistors adopting stacked gate dielectrics on flexible polycarbonate substrate. Solid-State Electronics, 2013, 89, 194-197.	1.4	28
47	Room-temperature flexible thin film transistor with high mobility. Current Applied Physics, 2013, 13, 1459-1462.	2.4	11
48	Structural stability of thermoelectric diffusion barriers: Experimental results and first principles calculations. Applied Physics Letters, $2013, 103, \ldots$	3.3	15
49	A low operating voltage IGZO TFT using LaLuO <inf>3</inf> gate dielectric. , 2013, , .		0
50	Flexible InGaZnO thin film transistors using stacked Y ₂ O ₃ gate dielectrics grown at room temperature. Physica Status Solidi - Rapid Research Letters, 2013, 7, 285-288.	2.4	17
51	Stability of Vanadium Electrolytes in the Vanadium Redox Flow Battery. Materials Research Society Symposia Proceedings, 2013, 1492, 25-31.	0.1	1
52	A Flexible IGZO Thin-Film Transistor With Stacked \${m TiO}_{2}\$-Based Dielectrics Fabricated at Room Temperature. IEEE Electron Device Letters, 2013, 34, 768-770.	3.9	103
53	Flexible InGaZnO TFTs with stacked GeO <inf>2</inf> /TiO <inf>2</inf> gate dielectrics., 2013,,.		0
54	Modified Carbon Papers as Electrode Materials of all-Vanadium Redox Flow Battery. Materials Research Society Symposia Proceedings, 2013, 1492, 15-23.	0.1	0

#	Article	IF	CITATIONS
55	High-Performance Metal–Insulator–Metal Capacitors With \$hbox{HfTiO}/hbox{Y}_{2}hbox{O}_{3}\$ Stacked Dielectric. IEEE Electron Device Letters, 2010, 31, 875-877.	3.9	21
56	High performance metal/insulator/metal capacitors using HfTiO as dielectric. , 2009, , .		3
57	Preparation and magnetic properties of lanthanum- and cobalt- substituted M-type Sr base sintered magnets. Japanese Journal of Applied Physics, 0, , .	1.5	2