Brett P Fors

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3459522/publications.pdf Version: 2024-02-01

RDETT D FODS

#	Article	IF	CITATIONS
1	Controlling the shape of the molecular weight distribution for tailored tensile and rheological properties in thermoplastics and thermoplastic elastomers. Journal of Polymer Science, 2022, 60, 1291-1299.	2.0	16
2	Metalâ€Free Ringâ€Opening Metathesis Polymerization with Hydrazonium Initiators**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
3	Photoredox Catalysis in Photocontrolled Cationic Polymerizations of Vinyl Ethers. Accounts of Chemical Research, 2022, 55, 1960-1971.	7.6	12
4	Hydrogen Bond Donor Catalyzed Cationic Polymerization of Vinyl Ethers. Angewandte Chemie, 2021, 133, 4585-4589.	1.6	1
5	Hydrogen Bond Donor Catalyzed Cationic Polymerization of Vinyl Ethers. Angewandte Chemie - International Edition, 2021, 60, 4535-4539.	7.2	32
6	Sustainable thermoplastic elastomers produced <i>via</i> cationic RAFT polymerization. Polymer Chemistry, 2021, 12, 1097-1104.	1.9	12
7	Performance optimization and fast rate capabilities of novel polymer cathode materials through balanced electronic and ionic transport. Journal of Materials Chemistry A, 2021, 9, 5657-5663.	5.2	19
8	Organic electrode materials for fast-rate, high-power battery applications. Materials Reports Energy, 2021, 1, 100008.	1.7	43
9	Effect of Structural Ordering on the Charge Storage Mechanism of p-Type Organic Electrode Materials. ACS Applied Materials & Interfaces, 2021, 13, 7135-7141.	4.0	23
10	Microstructural evolution of polyurea under hydrostatic pressure. Polymer, 2021, 227, 123845.	1.8	7
11	Depolymerization of Hydroxylated Polymers via Light-Driven C–C Bond Cleavage. Journal of the American Chemical Society, 2021, 143, 12268-12277.	6.6	56
12	Reversible redox controlled acids for cationic ring-opening polymerization. Chemical Science, 2021, 12, 10544-10549.	3.7	13
13	Achieving molecular weight distribution shape control and broad dispersities using RAFT polymerizations. Polymer Chemistry, 2021, 12, 4910-4915.	1.9	32
14	Photoswitching Cationic and Radical Polymerizations: Spatiotemporal Control of Thermoset Properties. Journal of the American Chemical Society, 2021, 143, 21200-21205.	6.6	29
15	Reversible C–C Bond Formation, Halide Abstraction, and Electromers in Complexes of Iron Containing Redox-Noninnocent Pyridine-imine Ligands. Inorganic Chemistry, 2021, 60, 18662-18673.	1.9	6
16	Predictive design of polymer molecular weight distributions in anionic polymerization. Polymer Chemistry, 2020, 11, 326-336.	1.9	45
17	Tailor-made thermoplastic elastomers: customisable materials <i>via</i> modulation of molecular weight distributions. Chemical Science, 2020, 11, 1361-1367.	3.7	37
18	Controlling the Shape of Molecular Weight Distributions in Coordination Polymerization and Its Impact on Physical Properties. Journal of the American Chemical Society, 2020, 142, 1443-1448.	6.6	88

Brett P Fors

#	Article	IF	CITATIONS
19	Shifting Boundaries: Controlling Molecular Weight Distribution Shape for Mechanically Enhanced Thermoplastic Elastomers. Macromolecules, 2020, 53, 7479-7486.	2.2	46
20	Dual Stimuli Switching: Interconverting Cationic and Radical Polymerizations with Electricity and Light. CheM, 2020, 6, 1794-1803.	5.8	43
21	Photocontrolled Radical Polymerization from Hydridic C–H Bonds. Journal of the American Chemical Society, 2020, 142, 4581-4585.	6.6	46
22	Crossâ€linking Effects on Performance Metrics of Phenazineâ€Based Polymer Cathodes. ChemSusChem, 2020, 13, 2428-2435.	3.6	41
23	Photocontrolled cationic degenerate chain transfer polymerizations <i>via</i> thioacetal initiators. Polymer Chemistry, 2020, 11, 6499-6504.	1.9	21
24	Hydrolytically-degradable homo- and copolymers of a strained exocyclic hemiacetal ester. Polymer Chemistry, 2019, 10, 4573-4583.	1.9	24
25	Controlling polymer properties through the shape of the molecular-weight distribution. Nature Reviews Materials, 2019, 4, 761-774.	23.3	155
26	Controlled Cationic Polymerization: Single-Component Initiation under Ambient Conditions. Journal of the American Chemical Society, 2019, 141, 10605-10609.	6.6	40
27	Elucidation of the electrochemical behavior of phenothiazine-based polyaromatic amines. Tetrahedron, 2019, 75, 4244-4249.	1.0	7
28	Renewable Thermosets and Thermoplastics from Itaconic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 2691-2701.	3.2	51
29	What happens in the dark? Assessing the temporal control of photoâ€mediated controlled radical polymerizations. Journal of Polymer Science Part A, 2019, 57, 268-273.	2.5	81
30	Exploiting Molecular Weight Distribution Shape to Tune Domain Spacing in Block Copolymer Thin Films. Journal of the American Chemical Society, 2018, 140, 4639-4648.	6.6	99
31	Electrochemically Controlled Cationic Polymerization of Vinyl Ethers. Journal of the American Chemical Society, 2018, 140, 2076-2079.	6.6	113
32	Molecular Weight Distribution Shape as a Versatile Approach to Tailoring Block Copolymer Phase Behavior. ACS Macro Letters, 2018, 7, 677-682.	2.3	60
33	Enhancing Temporal Control and Enabling Chainâ€End Modification in Photoregulated Cationic Polymerizations by Using Iridiumâ€Based Catalysts. Angewandte Chemie, 2018, 130, 8392-8396.	1.6	9
34	Phenothiazine-Based Polymer Cathode Materials with Ultrahigh Power Densities for Lithium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3560-3564.	2.5	63
35	Enhancing Temporal Control and Enabling Chainâ€End Modification in Photoregulated Cationic Polymerizations by Using Iridiumâ€Based Catalysts. Angewandte Chemie - International Edition, 2018, 57, 8260-8264.	7.2	51
36	On Demand Switching of Polymerization Mechanism and Monomer Selectivity with Orthogonal Stimuli. ACS Central Science, 2018, 4, 1228-1234.	5.3	96

BRETT P FORS

#	Article	IF	CITATIONS
37	Kationische Polymerisation: von der Photoinitiierung zur Steuerung durch Licht. Angewandte Chemie, 2017, 129, 9798-9808.	1.6	20
38	Cationic Polymerization: From Photoinitiation to Photocontrol. Angewandte Chemie - International Edition, 2017, 56, 9670-9679.	7.2	148
39	Synthesis of methylene butyrolactone polymers from itaconic acid. Journal of Polymer Science Part A, 2017, 55, 2730-2737.	2.5	35
40	Mechanistic Insight into the Photocontrolled Cationic Polymerization of Vinyl Ethers. Journal of the American Chemical Society, 2017, 139, 15530-15538.	6.6	120
41	Photocontrolled Interconversion of Cationic and Radical Polymerizations. Journal of the American Chemical Society, 2017, 139, 10665-10668.	6.6	183
42	Manipulation of Molecular Weight Distribution Shape as a New Strategy to Control Processing Parameters. Macromolecular Rapid Communications, 2017, 38, 1700352.	2.0	64
43	Cationic Polymerization of Vinyl Ethers Controlled by Visible Light. Journal of the American Chemical Society, 2016, 138, 15535-15538.	6.6	186
44	"Shaping―the Future of Molecular Weight Distributions in Anionic Polymerization. ACS Macro Letters, 2016, 5, 796-800.	2.3	93
45	Organic Catalysts for Photocontrolled Polymerizations. Synlett, 2016, 27, 702-713.	1.0	63
46	Beyond Dispersity: Deterministic Control of Polymer Molecular Weight Distribution. Journal of the American Chemical Society, 2016, 138, 1848-1851.	6.6	146
47	PET/CT Imaging of Chemokine Receptors in Inflammatory Atherosclerosis Using Targeted Nanoparticles. Journal of Nuclear Medicine, 2016, 57, 1124-1129.	2.8	50
48	Continuous flow synthesis of poly(methyl methacrylate) via a lightâ€mediated controlled radical polymerization. Journal of Polymer Science Part A, 2015, 53, 2693-2698.	2.5	78
49	Synthesis of Amorphous Monomeric Glass Mixtures for Organic Electronic Applications. Journal of Organic Chemistry, 2015, 80, 12740-12745.	1.7	10
50	Metal-Free Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2014, 136, 16096-16101.	6.6	787
51	Controlled Radical Polymerization of Acrylates Regulated by Visible Light. ACS Macro Letters, 2014, 3, 580-584.	2.3	236
52	External Regulation of Controlled Polymerizations. Angewandte Chemie - International Edition, 2013, 52, 199-210.	7.2	409
53	Palladium-Catalyzed Synthesis of <i>N</i> -Aryl Carbamates. Organic Letters, 2013, 15, 1394-1397.	2.4	56
54	Fabrication of Complex Threeâ€Dimensional Polymer Brush Nanostructures through Lightâ€Mediated Living Radical Polymerization. Angewandte Chemie - International Edition, 2013, 52, 6844-6848.	7.2	218

Brett P Fors

#	Article	IF	CITATIONS
55	Fabrication of Unique Chemical Patterns and Concentration Gradients with Visible Light. Journal of the American Chemical Society, 2013, 135, 14106-14109.	6.6	106
56	Me3(OMe)tBuXPhos: A Surrogate Ligand for Me4tBuXPhos in Palladium-Catalyzed C–N and C–O Bond-Forming Reactions. Journal of Organic Chemistry, 2012, 77, 2543-2547.	1.7	51
57	Control of a Living Radical Polymerization of Methacrylates by Light. Angewandte Chemie - International Edition, 2012, 51, 8850-8853.	7.2	724
58	Palladium-Catalyzed Cross-Coupling of Aryl Chlorides and Triflates with Sodium Cyanate: A Practical Synthesis of Unsymmetrical Ureas. Journal of the American Chemical Society, 2012, 134, 11132-11135.	6.6	115
59	Synthesis of Unsymmetrical Diarylureas via Pd-Catalyzed C–N Cross-Coupling Reactions. Organic Letters, 2011, 13, 3262-3265.	2.4	70
60	Palladium-catalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides: two ligands suffice in most cases. Chemical Science, 2011, 2, 57-68.	3.7	315
61	A Single Phosphine Ligand Allows Palladium atalyzed Intermolecular CO Bond Formation with Secondary and Primary Alcohols. Angewandte Chemie - International Edition, 2011, 50, 9943-9947.	7.2	186
62	Commentary on "A New, Efficient and Recyclable Lanthanum(III) Oxideâ€Catalyzed CN Crossâ€Couplingâ€ by S. Narayana Murthy, B. Madhav, V. Prakash Reddy, and Y.â€V.â€D. Nageswar, <i>Adv. Synth. Catal.</i> 20 <i>352</i> , 3241–3245. Advanced Synthesis and Catalysis, 2010, 352, 3119-3120.	ۥ 102.1	4
63	A Multiligand Based Pd Catalyst for Câ^'N Cross-Coupling Reactions. Journal of the American Chemical Society, 2010, 132, 15914-15917.	6.6	240
64	Stille Cross-Coupling Reactions of Aryl Mesylates and Tosylates Using a Biarylphosphine Based Catalyst System. Heterocycles, 2010, 80, 1215.	0.4	29
65	Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates. Organic Letters, 2010, 12, 2350-2353.	2.4	90
66	An efficient system for the Pd-catalyzed cross-coupling of amides and aryl chlorides. Tetrahedron, 2009, 65, 6576-6583.	1.0	111
67	A Versatile Catalyst System for Suzukiâ^'Miyaura Cross-Coupling Reactions of C(sp ²)-Tosylates and Mesylates. Organic Letters, 2009, 11, 3954-3957.	2.4	119
68	An Efficient Process for Pd-Catalyzed Câ^'N Cross-Coupling Reactions of Aryl Iodides: Insight Into Controlling Factors. Journal of the American Chemical Society, 2009, 131, 5766-5768.	6.6	170
69	Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics. Journal of the American Chemical Society, 2009, 131, 12898-12899.	6.6	205
70	Water-Mediated Catalyst Preactivation: An Efficient Protocol for Câ^'N Cross-Coupling Reactions. Organic Letters, 2008, 10, 3505-3508.	2.4	235
71	A Highly Active Catalyst for Pd-Catalyzed Amination Reactions: Cross-Coupling Reactions Using Aryl Mesylates and the Highly Selective Monoarylation of Primary Amines Using Aryl Chlorides. Journal of the American Chemical Society, 2008, 130, 13552-13554.	6.6	474
72	A New Class of Easily Activated Palladium Precatalysts for Facile Câ [^] 'N Cross-Coupling Reactions and the Low Temperature Oxidative Addition of Aryl Chlorides. Journal of the American Chemical Society, 2008, 130, 6686-6687.	6.6	378

#	Article	IF	CITATIONS
73	A facile microwave-assisted palladium-catalyzed cyanation of aryl chlorides. Tetrahedron Letters, 2006, 47, 3303-3305.	0.7	71
74	Metal–Free Ring–Opening Metathesis Polymerization with Hydrazonium Initiators. Angewandte Chemie, 0, , .	1.6	0