
Jerome Le Nours

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3459210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MR1 presents microbial vitamin B metabolites to MAIT cells. Nature, 2012, 491, 717-723.	13.7	1,158
2	Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nature Communications, 2013, 4, 2142.	5.8	261
3	CD1d-lipid antigen recognition by the $\hat{I}^{\hat{I}\hat{I}}$ TCR. Nature Immunology, 2013, 14, 1137-1145.	7.0	256
4	Unconventional T Cell Targets for Cancer Immunotherapy. Immunity, 2018, 48, 453-473.	6.6	242
5	Structure, biological functions and applications of the AB5 toxins. Trends in Biochemical Sciences, 2010, 35, 411-418.	3.7	204
6	Diversity of T Cells Restricted by the MHC Class I-Related Molecule MR1 Facilitates Differential Antigen Recognition. Immunity, 2016, 44, 32-45.	6.6	169
7	CD1a on Langerhans cells controls inflammatory skin disease. Nature Immunology, 2016, 17, 1159-1166.	7.0	134
8	Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nature Immunology, 2011, 12, 827-833.	7.0	111
9	Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Nature Immunology, 2012, 13, 857-863.	7.0	106
10	A class of γδT cell receptors recognize the underside of the antigen-presenting molecule MR1. Science, 2019, 366, 1522-1527.	6.0	98
11	Inhibitor binding in a class 2 dihydroorotate dehydrogenase causes variations in the membrane-associated N-terminal domain. Protein Science, 2004, 13, 1031-1042.	3.1	73
12	The Structure and Characterization of a Modular Endo-β-1,4-mannanase from Cellulomonas fimi,. Biochemistry, 2005, 44, 12700-12708.	1.2	63
13	T cell receptor recognition of CD1b presenting a mycobacterial glycolipid. Nature Communications, 2016, 7, 13257.	5.8	59
14	Host immunomodulatory lipids created by symbionts from dietary amino acids. Nature, 2021, 600, 302-307.	13.7	56
15	The molecular bases of δ/αβ T cell–mediated antigen recognition. Journal of Experimental Medicine, 2014, 211, 2599-2615.	4.2	52
16	T cell autoreactivity directed toward CD1c itself rather than toward carried self lipids. Nature Immunology, 2018, 19, 397-406.	7.0	52
17	Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in <i>MR1</i> . Science Immunology, 2020, 5, .	5.6	50
18	Human T cell response to CD1a and contact dermatitis allergens in botanical extracts and commercial skin care products. Science Immunology, 2020, 5, .	5.6	42

JEROME LE NOURS

#	Article	IF	CITATIONS
19	Structure of two fungal β-1,4-galactanases: Searching for the basis for temperature and pH optimum. Protein Science, 2003, 12, 1195-1204.	3.1	41
20	The molecular basis underpinning the potency and specificity of MAIT cell antigens. Nature Immunology, 2020, 21, 400-411.	7.0	41
21	Identification of a Potent Microbial Lipid Antigen for Diverse NKT Cells. Journal of Immunology, 2015, 195, 2540-2551.	0.4	40
22	Crystal Structure of a Legionella pneumophila Ecto -Triphosphate Diphosphohydrolase, A Structural and Functional Homolog of the Eukaryotic NTPDases. Structure, 2010, 18, 228-238.	1.6	39
23	Atypical natural killer T-cell receptor recognition of CD1d–lipid antigens. Nature Communications, 2016, 7, 10570.	5.8	34
24	Human skin is colonized by T cells that recognize CD1a independently of lipid. Journal of Clinical Investigation, 2021, 131, .	3.9	31
25	Tetrahydrolipstatin Inhibition, Functional Analyses, and Three-dimensional Structure of a Lipase Essential for Mycobacterial Viability. Journal of Biological Chemistry, 2010, 285, 30050-30060.	1.6	30
26	The Structure of Endo-β-1,4-galactanase from Bacillus licheniformis in Complex with Two Oligosaccharide Products. Journal of Molecular Biology, 2004, 341, 107-117.	2.0	28
27	Dual Modifications of α-Galactosylceramide Synergize to Promote Activation of Human Invariant Natural Killer T Cells and Stimulate Anti-tumor Immunity. Cell Chemical Biology, 2018, 25, 571-584.e8.	2.5	27
28	Mucosalâ€associated invariant T cell receptor recognition of small molecules presented by <scp>MR</scp> 1. Immunology and Cell Biology, 2018, 96, 588-597.	1.0	24
29	CD1a selectively captures endogenous cellular lipids that broadly block T cell response. Journal of Experimental Medicine, 2021, 218, .	4.2	24
30	EcxAB Is a Founding Member of a New Family of Metalloprotease AB5 Toxins with a Hybrid Cholera-like B Subunit. Structure, 2013, 21, 2003-2013.	1.6	22
31	Recognition of the antigen-presenting molecule MR1 by a Vδ3 ⁺ γδT cell receptor. Proceedings of the United States of America, 2021, 118, .	3.3	22
32	Structural Basis of Subtilase Cytotoxin SubAB Assembly. Journal of Biological Chemistry, 2013, 288, 27505-27516.	1.6	21
33	Differing roles of CD1d2 and CD1d1 proteins in type I natural killer T cell development and function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1204-E1213.	3.3	21
34	A single-domain bispecific antibody targeting CD1d and the NKT T-cell receptor induces a potent antitumor response. Nature Cancer, 2020, 1, 1054-1065.	5.7	21
35	Investigating the binding of βâ€1,4â€galactan to <i>Bacillus licheniformis</i> βâ€1,4â€galactanase by crystallography and computational modeling. Proteins: Structure, Function and Bioinformatics, 2009, 75, 977-989.	1.5	17
36	Distinct CD1d docking strategies exhibited by diverse Type II NKT cell receptors. Nature Communications, 2019, 10, 5242.	5.8	17

JEROME LE NOURS

#	Article	lF	CITATIONS
37	The molecular assembly of the marsupial γμ T cell receptor defines a third T cell lineage. Science, 2021, 371, 1383-1388.	6.0	16
38	Structural Analyses of a Purine Biosynthetic Enzyme from Mycobacterium tuberculosis Reveal a Novel Bound Nucleotide. Journal of Biological Chemistry, 2011, 286, 40706-40716.	1.6	15
39	Activity of three β-1,4-galactanases on small chromogenic substrates. Carbohydrate Research, 2011, 346, 2028-2033.	1.1	14
40	Atypical TRAV1-2â^' T cell receptor recognition of the antigen-presenting molecule MR1. Journal of Biological Chemistry, 2020, 295, 14445-14457.	1.6	13
41	Crystal Structure and Comparative Functional Analyses of a Mycobacterium Aldo-Keto Reductase. Journal of Molecular Biology, 2010, 398, 26-39.	2.0	12
42	Atypical sideways recognition of CD1a by autoreactive γδT cell receptors. Nature Communications, 2022, 13, .	5.8	12
43	Molecular recognition of microbial lipid-based antigens by T cells. Cellular and Molecular Life Sciences, 2018, 75, 1623-1639.	2.4	10
44	Molecular features of lipid-based antigen presentation by group 1 CD1 molecules. Seminars in Cell and Developmental Biology, 2018, 84, 48-57.	2.3	10
45	A TCR β-Chain Motif Biases toward Recognition of Human CD1 Proteins. Journal of Immunology, 2019, 203, 3395-3406.	0.4	10
46	Cloning, expression, purification and preliminary X-ray diffraction studies of a novel AB5toxin. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 912-915.	0.7	6
47	Novel Molecular Insights into Human Lipid-Mediated T Cell Immunity. International Journal of Molecular Sciences, 2021, 22, 2617.	1.8	5
48	CD1 and MR1 recognition by human $\hat{I}^3 \hat{I}^{\prime}$ T cells. Molecular Immunology, 2021, 133, 95-100.	1.0	4
49	CD1d lipid-antigen recognition by the $\hat{I}^{\hat{J}\hat{I}'}$ TCR. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C244-C244.	0.0	Ο
50	The structure of the marsupial γμ T-cell receptor defines a third T-cell lineage in vertebrates. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, C108-C108.	0.0	0
51	Molecular basis underpinning metabolite-mediated T-cell immunity. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, C110-C110.	0.0	О