Pablo MartÃ-n-Vasallo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3458648/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	AmotL2, IQGAP1, and FKBP51 Scaffold Proteins in Glioblastoma Stem Cell Niches. Journal of Histochemistry and Cytochemistry, 2022, 70, 9-16.	2.5	6
2	FKBP51, AmotL2 and IQGAP1 Involvement in Cilastatin Prevention of Cisplatin-Induced Tubular Nephrotoxicity in Rats. Cells, 2022, 11, 1585.	4.1	2
3	Genetic Profiling of Glucocorticoid (NR3C1) and Mineralocorticoid (NR3C2) Receptor Polymorphisms before Starting Therapy with Androgen Receptor Inhibitors: A Study of a Patient Who Developed Toxic Myocarditis after Enzalutamide Treatment. Biomedicines, 2022, 10, 1271.	3.2	1
4	Celastrol Prevents Oxidative Stress Effects on FSHR, PAPP, and CYP19A1 Gene Expression in Cultured Human Granulosa-Lutein Cells. International Journal of Molecular Sciences, 2021, 22, 3596.	4.1	3
5	CD34+ Stromal Cells/Telocytes as a Source of Cancer-Associated Fibroblasts (CAFs) in Invasive Lobular Carcinoma of the Breast. International Journal of Molecular Sciences, 2021, 22, 3686.	4.1	16
6	Molecular-Morphological Relationships of the Scaffold Protein FKBP51 and Inflammatory Processes in Knee Osteoarthritis. Cells, 2021, 10, 2196.	4.1	2
7	Disproportion in Pericyte/Endothelial Cell Proliferation and Mechanisms of Intussusceptive Angiogenesis Participate in Bizarre Vessel Formation in Glioblastoma. Cells, 2021, 10, 2625.	4.1	8
8	Celastrol and Melatonin Modify SIRT1, SIRT6 and SIRT7 Gene Expression and Improve the Response of Human Granulosa-Lutein Cells to Oxidative Stress. Antioxidants, 2021, 10, 1871.	5.1	8
9	Granulosa-Lutein Cell Sirtuin Gene Expression Profiles Differ between Normal Donors and Infertile Women. International Journal of Molecular Sciences, 2020, 21, 295.	4.1	16
10	Physiological Effects of the Electrogenic Current Generated by the Na ⁺ /K ⁺ Pump in Mammalian Articular Chondrocytes. Bioelectricity, 2020, 2, 258-268.	1.1	6
11	Over-Production of Therapeutic Growth Factors for Articular Cartilage Regeneration by Protein Production Platforms and Protein Packaging Cell Lines. Biology, 2020, 9, 330.	2.8	4
12	IQGAP1, AmotL2, and FKBP51 Scaffoldins in the Glioblastoma Microenvironment. Journal of Histochemistry and Cytochemistry, 2019, 67, 481-494.	2.5	5
13	The chondrocyte channelome: A narrative review. Joint Bone Spine, 2019, 86, 29-35.	1.6	60
14	Extracellular multivesicular bodies in tissues affected by inflammation/repair and tumors. Ultrastructural Pathology, 2018, 42, 448-457.	0.9	5
15	Increased expression of ATP12A proton pump in cystic fibrosis airways. JCI Insight, 2018, 3, .	5.0	43
16	Alterations in IQGAP1 expression and localization in colorectal carcinoma and liver metastases following oxaliplatin-based chemotherapy. Oncology Letters, 2017, 14, 2621-2628.	1.8	11
17	The Na, K-ATPase β-Subunit Isoforms Expression in Glioblastoma Multiforme: Moonlighting Roles. International Journal of Molecular Sciences, 2017, 18, 2369.	4.1	14
18	IQGAP1 in Podosomes/Invadosomes Is Involved in the Progression of Glioblastoma Multiforme Depending on the Tumor Status. International Journal of Molecular Sciences, 2017, 18, 150.	4.1	12

#	Article	IF	CITATIONS
19	Commitment of Scaffold Proteins in the Onco-Biology of Human Colorectal Cancer and Liver Metastases after Oxaliplatin-Based Chemotherapy. International Journal of Molecular Sciences, 2017, 18, 891.	4.1	12
20	Na,K-ATPase Isozymes in Colorectal Cancer and Liver Metastases. Frontiers in Physiology, 2016, 7, 9.	2.8	34
21	Expression and localization of the immunophilin FKBP51 in colorectal carcinomas and primary metastases, and alterations following oxaliplatin-based chemotherapy. Oncology Letters, 2016, 12, 1315-1322.	1.8	17
22	Expression Levels of the Oxidative Stress Response Gene ALDH3A2 in Granulosa-Lutein Cells Are Related to Female Age and Infertility Diagnosis. Reproductive Sciences, 2016, 23, 604-609.	2.5	19
23	The Neuronal-Specific SGK1.1 (SGK1_v2) Kinase as a Transcriptional Modulator of BAG4, Brox, and PPP1CB Genes Expression. International Journal of Molecular Sciences, 2015, 16, 7462-7477.	4.1	4
24	Differential Transcriptome Profile of Peripheral White Cells to Identify Biomarkers Involved in Oxaliplatin Induced Neuropathy. Journal of Personalized Medicine, 2014, 4, 282-296.	2.5	9
25	Na+, K+-ATPase Subunit Composition in a Human Chondrocyte Cell Line; Evidence for the Presence of α1, α3, β1, β2 and β3 Isoforms. International Journal of Molecular Sciences, 2012, 13, 5019-5034.	4.1	12
26	Changes in leukocyte gene expression profiles induced by antineoplastic chemotherapy. Oncology Letters, 2012, 3, 1341-1349.	1.8	13
27	Cilastatin protects against cisplatin-induced nephrotoxicity without compromising its anticancer efficiency in rats. Kidney International, 2012, 82, 652-663.	5.2	81
28	Cell sources for cartilage repair Contribution of the mesenchymal perivascular niche. Frontiers in Bioscience - Scholar, 2012, S4, 1275-1294.	2.1	14
29	Patients with endometriosis and patients with poor ovarian reserve have abnormal follicle-stimulating hormone receptor signaling pathways. Fertility and Sterility, 2011, 95, 2373-2378.	1.0	36
30	Na K -ATPase genes are down-regulated during adipose stem cell differentiation. Frontiers in Bioscience - Elite, 2011, E3, 1229-1240.	1.8	4
31	Differential cellular expression of FXYD1 (phospholemman) and FXYD2 (gamma subunit of Na, K-ATPase) in normal human tissues: A study using high density human tissue microarrays. Annals of Anatomy, 2010, 192, 7-16.	1.9	35
32	Expression and Distribution of Na, K-ATPase Isoforms in the Human Uterus. Reproductive Sciences, 2010, 17, 366-376.	2.5	10
33	FSH receptor, KL1/2, P450, and PAPP genes in granulosa-lutein cells from in vitro fertilization patients show a different expression pattern depending on the infertility diagnosis. Fertility and Sterility, 2010, 94, 99-104.	1.0	13
34	Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 2009, 24, 909-69.	0.7	451
35	Novel interactions of CLN3 protein link Batten disease to dysregulation of fodrin–Na+, K+ ATPase complex. Experimental Cell Research, 2008, 314, 2895-2905.	2.6	45
36	Autoantigenic nuclear proteins of a clinically atypical renal vasculitis. Journal of Autoimmune Diseases, 2008, 5, 3.	1.0	6

Pablo MartÃn-Vasallo

#	Article	IF	CITATIONS
37	Aquaporin water channels AQP1 and AQP3, are expressed in equine articular chondrocytes. Veterinary Journal, 2004, 168, 143-150.	1.7	50
38	Regeneration influences expression of the Na+,K+-atpase subunit isoforms in the rat peripheral nervous system. Neuroscience, 2004, 129, 691-702.	2.3	31
39	Human articular chondrocytes, synoviocytes and synovial microvessels express aquaporin water channels; upregulation of AQP1 in rheumatoid arthritis. Histology and Histopathology, 2004, 19, 435-44.	0.7	50
40	Epithelial Na, K-ATPase expression is down-regulated in canine prostate cancer; a possible consequence of metabolic transformation in the process of prostate malignancy. Cancer Cell International, 2003, 3, 8.	4.1	31
41	Expression and cellular localization of Na,K-ATPase isoforms in the rat ventral prostate. BJU International, 2003, 92, 793-802.	2.5	12
42	Na ⁺ ,K ⁺ â€ATPase Subunit Isoforms of the Developing Central Nervous System of the Lizard <i>Gallotia galloti</i> . Annals of the New York Academy of Sciences, 2003, 986, 608-610.	3.8	1
43	Na,Kâ€ATPase Isoforms in Pregnant and Nonpregnant Rat Uterus. Annals of the New York Academy of Sciences, 2003, 986, 614-616.	3.8	10
44	Expression and Cellular Localization of Na,Kâ€ATPase Isoforms in Dog Prostate in Health and Disease. Annals of the New York Academy of Sciences, 2003, 986, 708-710.	3.8	3
45	ATPase pumps in osteoclasts and osteoblasts. International Journal of Biochemistry and Cell Biology, 2002, 34, 459-476.	2.8	47
46	Chromatin structure analysis of the rat Na, K-ATPase β2 gene 5′-flanking region. International Journal of Biochemistry and Cell Biology, 2002, 34, 632-644.	2.8	4
47	Oligodendrocytes in brain and optic nerve express the ?3 subunit isoform of Na,K-ATPase. Glia, 2000, 31, 206-218.	4.9	30
48	Na+, K+-ATPase Isozyme Diversity; Comparative Biochemistry and Physiological Implications of Novel Functional Interactions. Bioscience Reports, 2000, 20, 51-91.	2.4	280
49	Epithelial sodium channels in skeletal cells; a role in mechanotransduction?. Cell Biology International, 1999, 23, 237-240.	3.0	17
50	Insulin stimulation of K + uptake in 3T3-L1 fibroblasts involves phosphatidylinositol 3-kinase and protein kinase C-zeta. Diabetologia, 1998, 41, 1199-1204.	6.3	35
51	Structure and expression of the human Na,K-ATPase β2-subunit gene. Gene, 1998, 208, 221-227.	2.2	15
52	Evidence that human endothelial cells express different isoforms of Na,K-ATPase. Journal of Hypertension, 1998, 16, 145-150.	0.5	13
53	The Molar Ratios of α and β Subunits of the Na+â^'K+-ATPase Differ in Distinct Subcellular Membranes from Rat Skeletal Muscleâ€. Biochemistry, 1997, 36, 7726-7732.	2.5	74
54	Isoforms of Na,K-ATPase α and β Subunits in the Rat Cerebellum and in Granule Cell Cultures. Journal of Neuroscience, 1997, 17, 3488-3502.	3.6	149

#	Article	IF	CITATIONS
55	Cellular and Developmental Distribution of the Na, K-ATPase ? Subunit Isoforms of Neural Tissues. Annals of the New York Academy of Sciences, 1997, 834, 110-114.	3.8	3
56	Opposite Expression Pattern of the Human Na, K-ATPase ?1 Isoform in Stomach and Colon Adenocarcinomas. Annals of the New York Academy of Sciences, 1997, 834, 653-655.	3.8	19
57	Expression of the β1 and β2(AMOG) subunits of the Na,K-ATPase in neural tissues: Cellular and developmental distribution patterns. Brain Research Bulletin, 1996, 40, 167-174.	3.0	50
58	Regional expression of sodium pump subunits isoforms and Na+-Ca++ exchanger in the human heart Journal of Clinical Investigation, 1996, 98, 1650-1658.	8.2	97
59	Expression of the β-subunit isoforms of the Na, K-ATpase in rat embryo tissues, inner ear and choroid plexus. Biology of the Cell, 1994, 81, 215-222.	2.0	57
60	Expression of multiple Na+,K+-ATPase genes reveals a gradient of isoforms along the nonpigmented ciliary epithelium: Functional implications in aqueous humor secretion. Journal of Cellular Physiology, 1991, 149, 184-194.	4.1	51
61	Expression of Na,K-ATPase alpha subunit isoforms in the human ciliary body and cultured ciliary epithelial cells. Journal of Cellular Physiology, 1989, 141, 243-252.	4.1	72
62	Lewy bodies in tyrosine hydroxylase-synthesizing neurons of the human cerebral cortex. Neuroscience Letters, 1989, 106, 49-54.	2.1	47