Christian Bruneau

List of Publications by Citations

Source: https://exaly.com/author-pdf/3458425/christian-bruneau-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 15,684 338 110 h-index g-index citations papers 16,812 6.9 5.2 471 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
338	Ruthenium(II)-catalyzed C-H bond activation and functionalization. <i>Chemical Reviews</i> , 2012 , 112, 5879-9	16 8.1	2254
337	Metal vinylidenes and allenylidenes in catalysis: applications in anti-Markovnikov additions to terminal alkynes and alkene metathesis. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2176-203	16.4	432
336	Metal Vinylidenes in Catalysis. <i>Accounts of Chemical Research</i> , 1999 , 32, 311-323	24.3	429
335	Transition metal catalyzed nucleophilic allylic substitution: activation of allylic alcohols via Fallylic species. <i>Chemical Society Reviews</i> , 2012 , 41, 4467-83	58.5	347
334	Direct arylation of arene C-H bonds by cooperative action of NHcarbene-ruthenium(II) catalyst and carbonate via proton abstraction mechanism. <i>Journal of the American Chemical Society</i> , 2008 , 130, 1156-	.7 6.4	347
333	Electrophilic activation and cycloisomerization of enynes: a new route to functional cyclopropanes. Angewandte Chemie - International Edition, 2005 , 44, 2328-34	16.4	330
332	Autocatalysis for C-H bond activation by ruthenium(II) complexes in catalytic arylation of functional arenes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10161-70	16.4	324
331	Cationic ruthenium allenylidene complexes as catalysts for ring closing olefin metathesis. <i>Chemistry - A European Journal</i> , 2000 , 6, 1847-57	4.8	230
330	C-H bond functionalization in water catalyzed by carboxylato ruthenium(II) systems. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6629-32	16.4	221
329	Cationic ruthenium allenylidene complexes as a new class of performing catalysts for ring closing metathesis. <i>Chemical Communications</i> , 1998 , 1315-1316	5.8	200
328	Chiral monodentate phosphorus ligands for rhodium-catalyzed asymmetric hydrogenation. <i>Tetrahedron: Asymmetry</i> , 2004 , 15, 2101-2111		162
327	Activation and functionalization of benzylic derivatives by palladium catalysts. <i>Chemical Society Reviews</i> , 2008 , 37, 290-9	58.5	154
326	sp3 C-H bond activation with ruthenium(II) catalysts and C(3)-alkylation of cyclic amines. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10340-3	16.4	136
325	Selective transformations of alkynes with rutheniumcatalysts. <i>Chemical Communications</i> , 1997 , 507-512	5.8	135
324	Metallvinylidene und -allenylidene in der Katalyse. <i>Angewandte Chemie</i> , 2006 , 118, 2232-2260	3.6	135
323	Eta6-mesityl,eta1-imidazolinylidene-carbene-ruthenium(II) complexes: catalytic activity of their allenylidene derivatives in alkene metathesis and cycloisomerisation reactions. <i>Chemistry - A European Journal</i> , 2003 , 9, 2323-30	4.8	134
322	General Synthesis of (Z)-Alk-1-en-1-yl Esters via Ruthenium-Catalyzed anti-Markovnikov trans-Addition of Carboxylic Acids to Terminal Alkynes. <i>Journal of Organic Chemistry</i> , 1995 , 60, 7247-725	5 4.2	134

321	Ruthenium diacetate-catalysed oxidative alkenylation of CH bonds in air: synthesis of alkenyl N-arylpyrazoles. <i>Green Chemistry</i> , 2011 , 13, 3075	10	129
320	Elektrophile Aktivierung und Cycloisomerisierung von Eninen: ein Weg zu funktionalen Cyclopropanen. <i>Angewandte Chemie</i> , 2005 , 117, 2380-2386	3.6	123
319	Pentamethylcyclopentadienyl-ruthenium catalysts for regio- and enantioselective allylation of nucleophiles. <i>Chemistry - A European Journal</i> , 2006 , 12, 5178-87	4.8	121
318	First ring-opening metathesis polymerization in an ionic liquid. Efficient recycling of a catalyst generated from a cationic ruthenium allenylidene complex. <i>New Journal of Chemistry</i> , 2002 , 26, 1667-1	676	120
317	Diethyl carbonate as a solvent for ruthenium catalysed CH bond functionalisation. <i>Green Chemistry</i> , 2009 , 11, 1871	10	119
316	[Cp*(eta2-bipy)(MeCN)RuII][PF6] catalysts for regioselective allylic substitution and characterization of dicationic [Cp*(eta2-bipy)(eta3-allyl)RuIV][PF6]2 intermediates. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 5066-8	16.4	117
315	Renewable materials as precursors of linear nitrile-acid derivatives via cross-metathesis of fatty esters and acids with acrylonitrile and fumaronitrile. <i>Green Chemistry</i> , 2009 , 11, 152-155	10	114
314	Catalytic synthesis of vinyl carbamates from carbon dioxide and alkynes with ruthenium complexes. Journal of Organic Chemistry, 1989 , 54, 1518-1523	4.2	113
313	Iridium-catalyzed oxidant-free dehydrogenative C-H bond functionalization: selective preparation of N-arylpiperidines through tandem hydrogen transfers. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8876-80	16.4	106
312	First ruthenium complexes with a chelating arene carbene ligand as catalytic precursors for alkene metathesis and cycloisomerisation. <i>New Journal of Chemistry</i> , 2001 , 25, 519-521	3.6	102
311	Ruthenium(IV) complexes featuring P,O-chelating ligands: regioselective substitution directly from allylic alcohols. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2782-5	16.4	101
310	Ruthenium-catalyzed synthesis of symmetrical N,N'-dialkylureas directly from carbon dioxide and amines. <i>Journal of Organic Chemistry</i> , 1991 , 56, 4456-4458	4.2	95
309	Ruthenium lkylidene catalysed cross-metathesis of fatty acid derivatives with acrylonitrile and methyl acrylate: a key step toward long-chain bifunctional and amino acid compounds. <i>Green Chemistry</i> , 2011 , 13, 2911	10	91
308	Synthesis of furans by cyclization of 2-En-4-yn-1-ols in the presence of ruthenium and palladium catalysts. <i>Tetrahedron</i> , 1995 , 51, 13089-13102	2.4	90
307	Imidazolium and Imidazolinium Salts as Carbene Precursors or Solvent for Ruthenium-Catalysed Diene and Enyne Metathesis. <i>Advanced Synthesis and Catalysis</i> , 2002 , 344, 585	5.6	89
306	Catalytic incorporation of CO2 into organic substrates: Synthesis of unsaturated carbamates, carbonates and ureas. <i>Journal of Molecular Catalysis</i> , 1992 , 74, 97-107		89
305	Ruthenium-Catalyzed Cascade N- and C(3)-Dialkylation of Cyclic Amines with Alcohols Involving Hydrogen Autotransfer Processes. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 3141-3146	5.6	88
304	Phosphine catalysed synthesis of unsaturated cyclic carbonates from carbon dioxide and propargylic alcohols. <i>Tetrahedron Letters</i> , 1989 , 30, 3981-3982	2	86

303	Dimethyl carbonate: an eco-friendly solvent in ruthenium-catalyzed olefin metathesis transformations. <i>ChemSusChem</i> , 2008 , 1, 813-6	8.3	85
302	Ruthenium-Catalyzed O-Allylation of Phenols from Allylic Chlorides via Cationic [Cp*(IB-allyl)(MeCN)RuX][PF6] Complexes. <i>Advanced Synthesis and Catalysis</i> , 2004 , 346, 835-841	5.6	84
301	Catalytic synthesis of 3-vinyl-2,5-dihydrofurans from yne-enes promoted by photochemically activated metal llenylidene LnRuCCCR2 complex. <i>Chemical Communications</i> , 1998 , 2249-2250	5.8	84
300	Autocatalytic intermolecular versus intramolecular deprotonation in C-H bond activation of functionalized arenes by ruthenium(II) or palladium(II) complexes. <i>Chemistry - A European Journal</i> , 2013 , 19, 7595-604	4.8	83
299	Ethenolysis of methyl oleate in room-temperature ionic liquids. <i>ChemSusChem</i> , 2008 , 1, 118-22	8.3	83
298	Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds. <i>Chemistry - A European Journal</i> , 2016 , 22, 12226-44	4.8	80
297	Room temperature operating allenylidene precatalyst [LnRuជជជR2]+X- for olefin metathesis: dramatic influence of the counter anion X <i>New Journal of Chemistry</i> , 1999 , 23, 141-143	3.6	79
296	Enol formates: ruthenium catalysed formation and formylating reagents. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1991 , 1197		78
295	Alkene metathesis catalysis in ionic liquids with ruthenium allenylidene salts. <i>Chemical Communications</i> , 2002 , 146-7	5.8	77
294	Michael additions of carbonucleophiles to butenone catalyzed by the non-hydride [Ru(O2CH)(CO)2(PPh3)]2 complex. <i>Tetrahedron</i> , 1999 , 55, 3937-3948	2.4	75
293	Palladium-catalysed direct arylation of thiophenes tolerant to silyl groups. <i>Chemical Communications</i> , 2011 , 47, 1872-4	5.8	74
292	C?H Bond Functionalization in Water Catalyzed by Carboxylato Ruthenium(II) Systems. <i>Angewandte Chemie</i> , 2010 , 122, 6779-6782	3.6	74
291	First enantioselective allylic etherification with phenols catalyzed by chiral ruthenium bisoxazoline complexes. <i>Chemical Communications</i> , 2004 , 1870-1	5.8	72
290	Ruthenium-carbene catalysts for the synthesis of 2,3-dimethylfuran. <i>Journal of Molecular Catalysis A</i> , 1997 , 118, L1-L4		71
289	Novel ruthenium-catalysed synthesis of furan derivatives via intramolecular cyclization of hydroxy enynes. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 493		71
288	N-Heterocyclic Carbenes: Useful Ligands for the Palladium-Catalysed Direct C5 Arylation of Heteroaromatics with Aryl Bromides or Electron-Deficient Aryl Chlorides. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 1798-1805	2.3	70
287	Ruthenium-Catalysed Additions to Alkynes: Synthesis of Activated Esters and Their Use in Acylation Reactions. <i>Synlett</i> , 1991 , 1991, 755-763	2.2	69
286	Polyamide precursors from renewable 10-undecenenitrile and methyl acrylate via olefin cross-metathesis. <i>Green Chemistry</i> , 2012 , 14, 2179	10	67

285	Cross-metathesis transformations of terpenoids in dialkyl carbonate solvents. <i>Green Chemistry</i> , 2011 , 13, 1448	10	67
284	Ruthenium-Catalysed Enantioselective Hydrogenation of Trisubstituted Enamides Derived from 2-Tetralone and 3-Chromanone: Influence of Substitution on the Amide Arm and the Aromatic Ring. <i>Advanced Synthesis and Catalysis</i> , 2003 , 345, 230-238	5.6	67
283	Optically Active Amine Derivatives: Ruthenium-Catalyzed Enantioselective Hydrogenation of Enamides. <i>Synlett</i> , 1999 , 1999, 1832-1834	2.2	66
282	Ruthenium(II)-catalyzed selective monoarylation in water and sequential functionalisations of CH bonds. <i>Green Chemistry</i> , 2013 , 15, 67-71	10	65
281	Z Selectivity: Recent Advances in one of the Current Major Challenges of Olefin Metathesis. <i>ChemCatChem</i> , 2013 , 5, 3436-3459	5.2	64
280	Ene-yne cross-metathesis with ruthenium carbene catalysts. <i>Beilstein Journal of Organic Chemistry</i> , 2011 , 7, 156-66	2.5	63
279	A direct route to bifunctional aldehyde derivatives via self- and cross-metathesis of unsaturated aldehydes. <i>ChemSusChem</i> , 2009 , 2, 542-5	8.3	63
278	Stereoselective synthesis of Z-enol esters catalysed by [bis(diphenylphosphino)alkane]bis(2-methylpropenyl)ruthenium complexes. <i>Journal of the Chemical Society Chemical Communications</i> , 1993 , 850-851		63
277	. European Journal of Organic Chemistry, 2001 , 2001, 3891-3897	3.2	62
276	Ruthenium Catalyst Dichotomy: Selective Catalytic Diene Cycloisomerization or Metathesis. <i>Helvetica Chimica Acta</i> , 2001 , 84, 3335-3341	2	62
275	Synthesis and catalytic applications of palladium N-heterocyclic carbene complexes as efficient pre-catalysts for SuzukiMiyaura and Sonogashira coupling reactions. <i>New Journal of Chemistry</i> , 2017 , 41, 5105-5113	3.6	61
274	Lewis Acid-Catalyzed Sequential Transformations: Straightforward Preparation of Functional Dihydropyridines. <i>Advanced Synthesis and Catalysis</i> , 2006 , 348, 2571-2574	5.6	61
273	Recovery of enlarged olefin metathesis catalysts by nanofiltration in an eco-friendly solvent. <i>ChemSusChem</i> , 2008 , 1, 927-33	8.3	60
272	Functional carbonates: cyclic <code>\Begin{align*} -methylene and Boxopropyl carbonates from prop-2-ynyl alcohol derivatives and CO2. Journal of the Chemical Society Perkin Transactions 1, 1991, 3271-3274</code>		60
271	Rate Studies and Mechanism of Ring-Closing Olefin Metathesis Catalyzed by Cationic Ruthenium Allenylidene Arene Complexes. <i>Organometallics</i> , 2003 , 22, 4459-4466	3.8	59
270	Eugenol as a renewable feedstock for the production of polyfunctional alkenes via olefin cross-metathesis. <i>RSC Advances</i> , 2012 , 2, 9584	3.7	58
269	Fluorine-containing ⊞-alkynyl amino esters and access to a new family of 3,4-dehydroproline analogues. <i>New Journal of Chemistry</i> , 2001 , 25, 16-18	3.6	56
268	Palladium-Catalysed Direct Polyarylation of Pyrrole Derivatives. <i>ChemCatChem</i> , 2013 , 5, 255-262	5.2	54

267	Tandem catalytic acrylonitrile cross-metathesis and hydrogenation of nitriles with ruthenium catalysts: direct access to linear ∃,⊞minoesters from renewables. <i>ChemSusChem</i> , 2012 , 5, 1410-4	8.3	54
266	Allenylidenefuthenium complexes as versatile precatalysts for alkene metathesis reactions. Journal of Molecular Catalysis A, 2004 , 213, 31-37		53
265	A green route to nitrogen-containing groups: the acrylonitrile cross-metathesis and applications to plant oil derivatives. <i>Green Chemistry</i> , 2011 , 13, 2258	10	52
264	Synthesis, Characterization and Catalytic Activity of New N-Heterocyclic Bis(carbene)ruthenium Complexes. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 1942-1949	2.3	50
263	Catalytic synthesis of O-®xoalkylcarbamates. <i>Tetrahedron Letters</i> , 1987 , 28, 2005-2008	2	50
262	Ruthenium-catalyzed reductive amination of allylic alcohols. <i>Organic Letters</i> , 2011 , 13, 3964-7	6.2	48
261	Synthesis of 軸minoacid derivatives via enantioselective hydrogenation of 転ubstituted-紙acylamino)acrylates. <i>Coordination Chemistry Reviews</i> , 2008 , 252, 532-544	23.2	48
260	Allylic ruthenium(IV) complexes in catalysis. <i>Coordination Chemistry Reviews</i> , 2012 , 256, 525-536	23.2	47
259	Benzylic Imidazolidinium, 3,4,5,6-Tetrahydropyrimidinium and Benzimidazolium Salts: Applications in Ruthenium-Catalyzed Allylic Substitution Reactions. <i>European Journal of Organic Chemistry</i> , 2008 , 2008, 2142-2149	3.2	47
258	Pentamethylcyclopentadienyl ruthenium: an efficient catalyst for the redox isomerization of functionalized allylic alcohols into carbonyl compounds. <i>Tetrahedron</i> , 2008 , 64, 11745-11750	2.4	47
257	Enantioselective Hydrogenation of the Tetrasubstituted C=C Bond of Enamides Catalyzed by a Ruthenium Catalyst Generated in situ. <i>Advanced Synthesis and Catalysis</i> , 2001 , 343, 331-334	5.6	47
256	Novel ruthenium-catalyzed synthesis of 1,3-dioxolan-4-ones from \oplus -hydroxy acids and terminal alkynes via enol esters. <i>Journal of Organometallic Chemistry</i> , 1993 , 451, 133-138	2.3	47
255	Activation of 1-alkynes at tripodal (polyphosphine)rhodium systems. Regioselective synthesis of enol esters from 1-alkynes and carboxylic acids catalyzed by rhodium(I) monohydrides. <i>Organometallics</i> , 1990 , 9, 1155-1160	3.8	47
254	Cross-metathesis with acrylonitrile and applications to fatty acid derivatives. <i>European Journal of Lipid Science and Technology</i> , 2010 , 112, 3-9	3	46
253	Ruthenium-Catalyzed One-Step Transformation of Propargylic Alcohols into Alkylidene Cyclobutenes: X-ray Characterization of an Ru(II-cyclobutenyl) Intermediate. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 2912-2915	16.4	46
252	A simple synthesis of oxazolidinones in one step from carbon dioxide. <i>Tetrahedron Letters</i> , 1990 , 31, 1721-1722	2	46
251	Selective and Efficient Iridium Catalyst for the Reductive Amination of Levulinic Acid into Pyrrolidones. <i>ChemSusChem</i> , 2017 , 10, 4150-4154	8.3	45
250	First Transformation of Unsaturated Fatty Esters Involving Enyne Cross-Metathesis. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 1115-1122	5.6	45

249	Ruthenium-catalyzed synthesis of allylic alcohols: boronic acid as a hydroxide source. <i>Chemistry - A European Journal</i> , 2008 , 14, 5630-7	4.8	45	
248	Efficient Iridium Catalysts for Base-Free Hydrogenation of Levulinic Acid. <i>Organometallics</i> , 2017 , 36, 31	53.816	5244	
247	Novel [Ruthenium(substituted-tetramethylcyclopentadiene) (2-quinolinecarboxylato)(allyl)] Hexafluorophosphate Complexes as Efficient Catalysts for Highly Regioselective Nucleophilic Substitution of Aliphatic Allylic Substrates. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 1601-1609	5.6	44	
246	Direct Preparation of [Ru(I2-O2CO)(I5-arene)(L)] Carbonate Complexes (L = Phosphane, Carbene) and Their Use as Precursors of [RuH2(p-cymene)(PCy3)] and [Ru(I6-arene)(L)(MeCN)2][BF4]2: X-ray Crystal Structure Determination of [Ru(I2-O2CO)(p-cymene)(PCy3)][I1/2CH2Cl2 and	2.3	44	
245	Simple New Three-component Catalytic System for Enyne Metathesis. <i>Synlett</i> , 2001 , 2001, 0397-0399	2.2	44	
244	PEPPSI-Type Palladium MHC Complexes: Synthesis, Characterization, and Catalytic Activity in the Direct C5-Arylation of 2-Substituted Thiophene Derivatives with Aryl Halides. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 1382-1391	2.3	43	
243	Ruthenium(IV) Complexes Featuring P,O-Chelating Ligands: Regioselective Substitution Directly from Allylic Alcohols. <i>Angewandte Chemie</i> , 2010 , 122, 2842-2845	3.6	43	
242	N-Alkylation and N,C-Dialkylation of Amines with Alcohols in the Presence of Ruthenium Catalysts with Chelating N-Heterocyclic Carbene Ligands. <i>Organometallics</i> , 2015 , 34, 2296-2304	3.8	42	
241	C⊞ bond functionalisation with [RuH(codyl)2]BF4 catalyst precursor. <i>Green Chemistry</i> , 2011 , 13, 2315	10	41	
240	Cascade and Sequential Catalytic Transformations Initiated by Ruthenium Catalysts295-326		41	
239	Ruthenium-Bisimine: A New Catalytic Precursor for Regioselective Allylic Alkylation. <i>Synlett</i> , 2003 , 2003, 0408-0410	2.2	41	
238	[Cp*([½-bipy)(MeCN)RuII][PF6] Catalysts for Regioselective Allylic Substitution and Characterization of Dicationic [Cp*([½-bipy)([B-allyl)RuIV][PF6]2 Intermediates. <i>Angewandte Chemie</i> , 2003, 115, 5220-5222	3.6	41	
237	⊞-Diimines as nitrogen ligands for ruthenium-catalyzed allylation reactions and related (pentamethylcyclopentadienyl) ruthenium complexes. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 2149-2158	2.3	41	
236	New in situ Generated Ruthenium Catalyst for Enyne Metathesis: Access to Novel Cyclic Siloxanes. <i>Advanced Synthesis and Catalysis</i> , 2001 , 343, 184-187	5.6	41	
235	Ruthenium(II)-Catalysed Functionalisation of CH Bonds with Alkenes: Alkenylation versus Alkylation. <i>Topics in Organometallic Chemistry</i> , 2015 , 137-188	0.6	40	
234	Ruthenium B enzylidenes and Ruthenium I hdenylidenes as Efficient Catalysts for the Hydrogenation of Aliphatic Nitriles into Primary Amines. <i>ChemCatChem</i> , 2012 , 4, 1911-1916	5.2	40	
233	Acceptorless ruthenium catalyzed dehydrogenation of alcohols to ketones and esters. <i>Catalysis Science and Technology</i> , 2012 , 2, 1425	5.5	39	
232	Ruthenium catalysts for selective nucleophilic allylic substitution. <i>Pure and Applied Chemistry</i> , 2008 , 80, 861-871	2.1	39	

231	Preparation of Optically Active Cyclic Carbonates and 1,2-DiolsviaEnantioselective Hydrogenation of \Box -Methylenedioxolanones Catalyzed by Chiral Ruthenium(II) Complexes. <i>Journal of Organic Chemistry</i> , 1996 , 61, 8453-8455	4.2	39
230	Selective carbonBarbon bond formation: terpenylations of amines involving hydrogen transfers. <i>Green Chemistry</i> , 2013 , 15, 775	10	38
229	Selective isomerisation of prop-2-yn-1-ols into⊞, tunsaturated aldehydes catalysed byRu[B-CH2C(Me)CH2]2(Ph2PCH2CH2PPh2). <i>Chemical Communications</i> , 1997 , 1201-1202	5.8	38
228	Access to 3-Methyl-4-methylene-N-tosylpyrrolidine and 3,4-DimethylN-tosylpyrroline by Ruthenium-Catalyzed Cascade Cycloisomerization/Isomerization Reactions. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 418-422	2.3	38
227	Selective transformations of alkynols catalyzed by ruthenium complexes. <i>Inorganica Chimica Acta</i> , 1994 , 222, 155-163	2.7	38
226	Ionic imidazolium containing ruthenium complexes and olefin metathesis in ionic liquids. <i>Journal of Molecular Catalysis A</i> , 2007 , 268, 127-133		37
225	Enol esters as intermediates for the facile conversion of amino acids into amides and dipeptides. <i>Tetrahedron Letters</i> , 1991 , 32, 5359-5362	2	37
224	Selective ruthenium-catalyzed hydrochlorination of alkynes: one-step synthesis of vinylchlorides. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12112-5	16.4	36
223	Palladium-catalyzed direct arylation of 5-chloropyrazoles: a selective access to 4-aryl pyrazoles. Journal of Organic Chemistry, 2012 , 77, 7659-64	4.2	36
222	Efficient Synthesis of 卧minoacrylates and 眶naminones Catalyzed by Zn(OAc)2四H2O. <i>Collection of Czechoslovak Chemical Communications</i> , 2005 , 70, 1943-1952		36
221	Enantioselective Hydrogenation of 卧cylamino Acrylates Catalyzed by Rhodium(I)-Monophosphite Complexes. <i>Advanced Synthesis and Catalysis</i> , 2004 , 346, 33-36	5.6	36
220	Ruthenium Phosphine-Pyridone Catalyzed Cross-Coupling of Alcohols To form \oplus -Alkylated Ketones. <i>Journal of Organic Chemistry</i> , 2017 , 82, 10727-10731	4.2	35
219	Vicinal 日,野unctionalizations of amines: cyclization versus dehydrogenative hydrolysis. <i>Chemistry - A European Journal</i> , 2015 , 21, 14319-23	4.8	35
218	A straightforward access to guaiazulene derivatives using palladium-catalysed sp2 or sp3 C-H bond functionalisation. <i>Chemical Communications</i> , 2013 , 49, 5598-600	5.8	35
217	N-Heterocyclic carbene-palladium catalysts for the direct arylation of pyrrole derivatives with aryl chlorides. <i>Beilstein Journal of Organic Chemistry</i> , 2013 , 9, 303-12	2.5	35
216	Ruthenium-indenylidene olefin metathesis catalyst with enhanced thermal stability. <i>Chemistry - A European Journal</i> , 2010 , 16, 12255-61	4.8	35
215	Powerful control by organoruthenium catalysts of the regioselective addition to C(1) or C(2) of the prop-2-ynyl ethers C?C triple bond. <i>Journal of Organometallic Chemistry</i> , 1998 , 551, 151-157	2.3	35
214	Ruthenium Vinylidenes and Allenylidenes in Catalysis. <i>Topics in Organometallic Chemistry</i> , 2004 , 125-15	3 0.6	35

213	Iridium-Catalyzed Hydrogenation and Dehydrogenation of N-Heterocycles in Water under Mild Conditions. <i>ChemSusChem</i> , 2019 , 12, 2350-2354	8.3	34
212	Synthesis of N-heterocyclic carbene-palladium-PEPPSI complexes and their catalytic activity in the direct C-H bond activation. <i>Journal of Organometallic Chemistry</i> , 2018 , 867, 404-412	2.3	34
211	Ruthenium-catalyzed synthesis of alkylidenecyclobutenes via head-to-head dimerization of propargylic alcohols and cyclobutadiene-ruthenium intermediates. <i>Chemistry - A European Journal</i> , 2005 , 11, 1312-24	4.8	34
21 0	sp3 CH Bond Functionalization with Ruthenium Catalysts. <i>Topics in Organometallic Chemistry</i> , 2014 , 195-236	0.6	33
209	Isoquinoline derivatives via stepwise regioselective sp(2) and sp(3) C-H bond functionalizations. <i>Journal of Organic Chemistry</i> , 2012 , 77, 3674-8	4.2	33
208	Synthesis of fluorine-containing cyclic amino acid derivatives via ring closing olefin metathesis. <i>Chemical Communications</i> , 1998 , 2053-2054	5.8	33
207	Regioselective allylic alkylation and etherification catalyzed by in situ generated N-heterocyclic carbene ruthenium complexes. <i>Tetrahedron Letters</i> , 2006 , 47, 535-538	2	33
206	Stereoselective preparation of Z-trisubstituted alkylidene cyclic carbonates via palladium-catalyzed carbon?carbon bond formation. <i>Tetrahedron Letters</i> , 2000 , 41, 5527-5531	2	33
205	Alkylidene-Ruthenium-Tin Catalysts for the Formation of Fatty Nitriles and Esters via Cross-Metathesis of Plant Oil Derivatives Organometallics, 2010, 29, 5257-5262	3.8	32
204	Efficient Ruthenium-Catalysed Synthesis of 3-Hydroxy-1-propen-1-yl Benzoates: En Route to an Improved Isomerization of 2-Propyn-1-ols into 日,即Improved Isomerization of 2-Propyn-1-ols into I	3.2	32
203	Base-Free Dehydrogenation of Aqueous and Neat Formic Acid with Iridium(III) Cp*(dipyridylamine) Catalysts. <i>ChemSusChem</i> , 2019 , 12, 179-184	8.3	32
202	Ruthenium and Iridium Dipyridylamine Catalysts for the Efficient Synthesis of EValerolactone by Transfer Hydrogenation of Levulinic Acid. <i>Organometallics</i> , 2017 , 36, 708-713	3.8	31
201	Concomitant monoreduction and hydrogenation of unsaturated cyclic imides to lactams catalyzed by ruthenium compounds. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2021-3	16.4	31
200	Tandem isomerization/Claisen transformation of allyl homoallyl and diallyl ethers into gamma,delta-unsaturated aldehydes with a new three component catalyst Ru3(CO)12/imidazolinium salt/Cs2CO3. <i>Chemical Communications</i> , 2002 , 1772-3	5.8	31
199	Benzimidazole, Benzothiazole and Benzoxazole Ruthenium(II) Complexes; Catalytic Synthesis of 2,3-Dimethylfuran. <i>European Journal of Inorganic Chemistry</i> , 2000 , 2000, 29-32	2.3	31
198	Efficient preparations of acylamides, acylcarbamates and acylureas from alk-1-en-2-yl esters. <i>Tetrahedron</i> , 1995 , 51, 10901-10912	2.4	31
197	Benzimidazolium sulfonate ligand precursors and application in ruthenium-catalyzed aromatic amine alkylation with alcohols. <i>Catalysis Communications</i> , 2016 , 74, 33-38	3.2	30
196	Reactivity of 3-Substituted Fluorobenzenes in Palladium- Catalysed Direct Arylations with Aryl Bromides. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 1586-1596	5.6	30

195	Synthesis of heteroarylated polyfluorobiphenyls via palladium-catalyzed sequential sp2 C-H bonds functionalizations. <i>Journal of Organic Chemistry</i> , 2013 , 78, 4177-83	4.2	30
194	Synthesis of functionalized CF3-containing heterocycles via [2,3]-sigmatropic rearrangement and sequential catalytic carbocyclization. <i>Tetrahedron</i> , 2011 , 67, 3524-3532	2.4	30
193	η3-Allylruthenium Complexes and Ruthenium-Catalysed Nucleophilic Substitution of Allylic Substrates. <i>Current Organic Chemistry</i> , 2006 , 10, 115-133	1.7	30
192	Thermal behavior of some organic phosphates. <i>Industrial & Engineering Chemistry Product Research and Development</i> , 1984 , 23, 98-102		30
191	Improving sustainability in ene-yne cross-metathesis for transformation of unsaturated fatty esters. <i>ChemSusChem</i> , 2010 , 3, 1291-7	8.3	29
190	Synthesis and Reactivity of [Ru(Cp*)(L)(MeCN)2][PF6] (L = Ph2POMe or Ph2P-o-tolyl) and {Ru(Cp*)[Ph2PCH2C(tBu)=O](MeCN)}[PF6] Complexes, Their Involvement as Catalyst Precursors for Regioselective Allylic Substitution Reactions and Related [Ru(Cp*)Cl(Ph2POMe)(RCHCHCH2)][PF6]	2.3	29
189	Unmasking Amides: Ruthenium-Catalyzed Protodecarbonylation of N-Substituted Phthalimide Derivatives. <i>Organic Letters</i> , 2017 , 19, 6404-6407	6.2	28
188	Phosphine-Free Palladium Catalytic System for the Selective Direct Arylation of Furans or Thiophenes bearing Alkenes and Inhibition of Heck-Type Reaction. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 2749-2760	5.6	28
187	New optically active amido-phosphinite ligand and ruthenium complexes. <i>Tetrahedron: Asymmetry</i> , 1998 , 9, 2279-2284		28
186	Iridium-Catalyzed Oxidant-Free Dehydrogenative C?H Bond Functionalization: Selective Preparation of N-Arylpiperidines through Tandem Hydrogen Transfers. <i>Angewandte Chemie</i> , 2012 , 124, 9006-9010	3.6	27
185	2-Imidazolineland 1,4,5,6-tetrahydropyrimidinelluthenium(II) complexes and catalytic synthesis of furan. <i>Journal of Organometallic Chemistry</i> , 1999 , 575, 187-192	2.3	27
184	Methyl ricinoleate as platform chemical for simultaneous production of fine chemicals and polymer precursors. <i>ChemSusChem</i> , 2012 , 5, 2249-54	8.3	26
183	Synthesis of ⊞-Alkynyl- m trifluoroalanine Derivatives by Sonogashira Cross-Coupling Reaction. <i>European Journal of Organic Chemistry</i> , 2010 , 2010, 1587-1592	3.2	26
182	A New Preparation of Optically ActiveN-Acyloxazolidinones via Ruthenium-Catalyzed Enantioselective Hydrogenation. <i>Journal of Organic Chemistry</i> , 1998 , 63, 1806-1809	4.2	26
181	Smart ruthenium catalysts for the selective catalytic transformations of alkynes. <i>Pure and Applied Chemistry</i> , 1998 , 70, 1065-1070	2.1	26
180	Ruthenium-Catalyzed Synthesis of 1,2-Diketones from Alkynes. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 5071-5077	3.2	25
179	Metathesis Catalysts with Fluorinated Unsymmetrical NHC Ligands. <i>Organometallics</i> , 2015 , 34, 2305-23	13 .8	25
178	Phosphine-free palladium-catalysed direct C2-arylation of benzothiophenes with aryl bromides. <i>Tetrahedron</i> , 2013 , 69, 7082-7089	2.4	25

177	Ruthenium-catalyzed synthesis of functionalized 1,3-dienes. Organic Letters, 2009, 11, 185-8	6.2	25
176	Indirect and direct catalytic asymmetric reductive amination of 2-tetralone. <i>Tetrahedron:</i> Asymmetry, 2010 , 21, 1350-1354		25
175	Immobilisation of an ionically tagged Hoveyda catalyst on a supported ionic liquid membrane: An innovative approach for metathesis reactions in a catalytic membrane reactor. <i>Catalysis Today</i> , 2010 , 156, 268-275	5.3	25
174	Iridium-Catalyzed Sustainable Access to Functionalized Julolidines through Hydrogen Autotransfer. <i>ChemCatChem</i> , 2015 , 7, 1090-1096	5.2	24
173	Allenylidene to Indenylidene Rearrangement in Cationic p-Cymene Ruthenium(II) Complexes: Solvent, Counteranion, and Substituent Effects in the Key Step toward Catalytic Olefin Metathesis. <i>Organometallics</i> , 2010 , 29, 4524-4531	3.8	24
172	A new dicoumarinyl ether and two rare furocoumarins from Ruta montana. Floterap[12003, 74, 194-6	3.2	24
171	Ruthenium-catalyzed CH bond functionalization in cascade and one-pot transformations. <i>Coordination Chemistry Reviews</i> , 2021 , 428, 213602	23.2	24
170	New ruthenium metathesis catalysts with chelating indenylidene ligands: synthesis, characterization and reactivity. <i>Dalton Transactions</i> , 2012 , 41, 3695-700	4.3	23
169	Synthesis of new terpene derivatives via ruthenium catalysis: rearrangement of silylated enynes derived from terpenoids. <i>Tetrahedron</i> , 2003 , 59, 9425-9432	2.4	23
168	Concomitant catalytic transformations of geminal ethynyl and hydroxy groups of steroids into acetyl and ester functions with retention of configuration by [Ru(µ-O2CH)(CO)2(PPh3)]2. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 333-334		23
167	Iron-catalysed tandem isomerisation/hydrosilylation reaction of allylic alcohols with amines. <i>RSC Advances</i> , 2014 , 4, 25892	3.7	22
166	Terminal conjugated dienes via a ruthenium-catalyzed cross-metathesis/elimination sequence: application to renewable resources. <i>Catalysis Science and Technology</i> , 2014 , 4, 2064-2071	5.5	22
165	Silica and zirconia supported olefin metathesis pre-catalysts: Synthesis, catalytic activity and multiple-use in dimethyl carbonate. <i>Journal of Molecular Catalysis A</i> , 2012 , 357, 73-80		22
164	Preparation of chiral ruthenium(IV) complexes and applications in regio- and enantioselective allylation of phenols. <i>Dalton Transactions</i> , 2011 , 40, 5625-30	4.3	22
163	Group 8 Metals-Catalyzed O⊞ Bond Addition to Unsaturated Molecules. <i>Topics in Organometallic Chemistry</i> , 2011 , 203-230	0.6	22
162	Ruthenium-containing phosphinesulfonate chelate for the hydrogenation of aryl ketones. <i>Chemistry - A European Journal</i> , 2013 , 19, 10343-52	4.8	21
161	Phosphine-pyridonate ligands containing octahedral ruthenium complexes: access to esters and formic acid. <i>Catalysis Science and Technology</i> , 2017 , 7, 3492-3498	5.5	21
160	Ester as a blocking group for palladium-catalysed direct forced arylation at the unfavourable site of heteroaromatics: simple access to the less accessible regioisomers. <i>Green Chemistry</i> , 2012 , 14, 1111	10	21

159	Ruthenium-Catalyzed Nucleophilic Allylic Substitution Reactions from Silylated Allylic Carbonates. <i>Organometallics</i> , 2009 , 28, 5173-5182	3.8	21
158	Efficient ruthenium-catalyzed synthesis of [3]dendralenes from 1,3-dienic allylic carbonates. <i>Chemical Communications</i> , 2009 , 6580-2	5.8	21
157	Synthesis of alkenyl-2,5-dihydrofurans via palladium-catalysed reaction of cyclic alkynyl carbonates. <i>Chemical Communications</i> , 1996 , 919	5.8	21
156	Cyclobutene ring-opening of bicyclo[4.2.0]octa-1,6-dienes: access to CF3-substituted 5,6,7,8-tetrahydro-1,7-naphthyridines. <i>Journal of Organic Chemistry</i> , 2012 , 77, 8518-26	4.2	20
155	Chemical Composition of the Essential Oil of Rosmarinus officinalis Cultivated in the Algerian Sahara. <i>Chemistry of Natural Compounds</i> , 2004 , 40, 28-29	0.7	20
154	Selective Catalytic Transformations of Alkynyl Cyclic Carbonates into either Homopropargylic or \Box -Allenyl Alcohols. <i>Synlett</i> , 1994 , 1994, 457-458	2.2	20
153	Novel syntheses of oxamides, oxamates and oxalates from diisopropenyl oxalate. <i>Tetrahedron</i> , 1993 , 49, 2629-2640	2.4	20
152	Transformations of terpenes and terpenoids via carbonBarbon double bond metathesis. <i>Catalysis Science and Technology</i> , 2018 , 8, 3989-4004	5.5	19
151	Access to Cyclic ⊞-CF3-Substituted ⊞-Amino Acid Derivatives by Ring-Closing Metathesis of Functionalized 1,7-Enynes. <i>European Journal of Organic Chemistry</i> , 2013 , 2013, 5353-5363	3.2	19
150	Ruthenium-catalysed synthesis of functional conjugated dienes from propargylic carbonates and silyl diazo compounds. <i>Chemistry - A European Journal</i> , 2013 , 19, 3292-6	4.8	19
149	Ruthenium catalyzed ethenolysis of renewable oleonitrile. <i>European Journal of Lipid Science and Technology</i> , 2014 , 116, 1583-1589	3	19
148	(S,S,S)-Perhydroindolic acid: efficient catalyst for direct asymmetric aldol reaction from aromatic aldehydes. <i>Tetrahedron: Asymmetry</i> , 2006 , 17, 2187-2190		19
147	Homologation of Monoterpenoids into New Sesquiterpenoids via Tandem Isomerisation/Claisen Rearrangement Reactions with Three-Component Ruthenium Catalysts, and Ru(methallyl)2(COD) Revealed by High Throughput Screening Techniques. <i>Advanced Synthesis and Catalysis</i> , 2005 , 347, 783-	5.6 791	19
146	New route to optically active amine derivatives: ruthenium-catalyzed enantioselective hydrogenation of ene carbamates. <i>Tetrahedron: Asymmetry</i> , 1999 , 10, 3467-3471		19
145	Ru-Catalyzed Selective C-H Bond Hydroxylation of Cyclic Imides. <i>Journal of Organic Chemistry</i> , 2019 , 84, 1898-1907	4.2	19
144	One-step synthesis of 1-halo-1,3-butadienes via ruthenium-catalysed hydrohalogenative dimerisation of alkynes. <i>Chemical Communications</i> , 2012 , 48, 11032-4	5.8	18
143	Synthesis of six-membered cyclic siloxanes via enyne metathesis with a ruthenium catalyst generated in situ. <i>Journal of Molecular Catalysis A</i> , 2002 , 190, 9-25		18
142	Analysis of the essential oil of Thymus numidicus (Poiret) from Algeria. <i>Flavour and Fragrance Journal</i> , 2005 , 20, 235-236	2.5	18

141	Ruthenium-catalyzed allylation reaction in ionic liquid. Journal of Molecular Catalysis A, 2005, 237, 161-16	54	18	
140	Synthesis of optically active 2-aminotetraline derivatives via enantioselective ruthenium-catalyzed hydrogenation of ene carbamates. <i>Tetrahedron: Asymmetry</i> , 2001 , 12, 863-867		18	
139	Site-selective Ru-catalyzed CH bond alkenylation with biologically relevant isoindolinones: a case of catalyst performance controlled by subtle stereo-electronic effects of the weak directing group. <i>Catalysis Science and Technology</i> , 2019 , 9, 4711-4717	5.5	17	
138	Palladium-acetate catalyst for regioselective direct arylation at C2 of 3-furanyl or 3-thiophenyl acrylates with inhibition of Heck type reaction. <i>Tetrahedron</i> , 2013 , 69, 4381-4388	2.4	17	
137	Palladium(0), copper(I) catalysed synthesis of conjugated alkynyl \(\pi\)-allenols from alkynyl cyclic carbonates and terminal alkynes. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 1845-1	846	17	
136	Ring-expanded iridium and rhodium N-heterocyclic carbene complexes: a comparative DFT study of heterocycle ring size and metal center diversity. <i>Journal of Coordination Chemistry</i> , 2017 , 70, 1270-1284	1.6	16	
135	Synthesis and Characterization of Sterically Enlarged Hoveyda-Type Olefin Metathesis Catalysts. European Journal of Inorganic Chemistry, 2013 , 2013, 54-60	2.3	16	
134	Modification of Terpenoid Derivatives with Ruthenium Catalysts Generated in situ. <i>European Journal of Organic Chemistry</i> , 2002 , 2002, 3816-3820	3.2	16	
133	Enantioselective hydrogenation of 2?-chloroacetophenone with ((R)-Binap)Ru(O2CAr)2 complexes: Influence of carboxylate ligands and solvents. <i>Tetrahedron: Asymmetry</i> , 1996 , 7, 525-528		16	
132	Acetylene in Catalysis: a One-step Synthesis of Vinylcarbamates with [RuCl2(norbornadiene)]n. <i>Journal of Molecular Catalysis</i> , 1988 , 44, 175-178		16	
131	C-H Bond Alkylation of Cyclic Amides with Maleimides via a Site-Selective-Determining Six-Membered Ruthenacycle. <i>Journal of Organic Chemistry</i> , 2019 , 84, 16183-16191	4.2	16	
130	Ruthenium(II) and iridium(III) complexes featuring NHC-sulfonate chelate. <i>Dalton Transactions</i> , 2015 , 44, 17467-72	4.3	15	
129	Ruthenium(II)-Catalyzed C-H (Hetero)Arylation of Alkenylic 1,n-Diazines (n = 2, 3, and 4): Scope, Mechanism, and Application in Tandem Hydrogenations. <i>Journal of Organic Chemistry</i> , 2018 , 83, 1462-147	17	15	
128	Formic acid as a hydrogen source for the iridium-catalyzed reductive amination of levulinic acid and 2-formylbenzoic acid. <i>Catalysis Science and Technology</i> , 2019 , 9, 4077-4082	5.5	15	
127	An Efficient Protocol for Palladium N-Heterocyclic Carbene-Catalysed Suzuki-Miyaura Reaction at room temperature. <i>ChemistrySelect</i> , 2017 , 2, 5729-5734	1.8	15	
126	Interest of the Precatalyst Design for Olefin Metathesis Operating in a Discontinuous Nanofiltration Membrane Reactor. <i>ChemPlusChem</i> , 2013 , 78, 728-736	2.8	15	
125	Imidazolium-Oxazoline Salts in Ruthenium-Catalyzed Allylic Substitution and Cross Metathesis of Formed Branched Isomers. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 4752-4756	2.3	15	
124	New Synthesis of Heterocycles via Palladium-Catalyzed Double Carbonylation of Cyclic Alk-1-ynyl Carbonates. <i>Synlett</i> , 1996 , 1996, 218-220	2.2	15	

123	One-Pot Directing Group Formation/CH Bond Functionalization via Copper(I) and Ruthenium(II) Catalysis. <i>Advanced Synthesis and Catalysis</i> , 2016 , 358, 3847-3856	5.6	15
122	Synthesis of metathesis catalysts with fluorinated unsymmetrical N , N Ediaryl imidazoline-based NHC ligands. <i>Journal of Fluorine Chemistry</i> , 2017 , 200, 66-76	2.1	14
121	Cross metathesis of bio-sourced fatty nitriles with acrylonitrile. <i>Monatshefte Fil Chemie</i> , 2015 , 146, 110	7-1.1413	14
120	Cross-metathesis of fatty acid methyl esters with acrolein: An entry to a variety of bifunctional compounds. <i>European Journal of Lipid Science and Technology</i> , 2015 , 117, 209-216	3	14
119	Regio- and stereoselective syntheses of piperidine derivatives via ruthenium-catalyzed coupling of propargylic amides and allylic alcohols. <i>Chemical Communications</i> , 2012 , 48, 6589-91	5.8	14
118	Iron salts catalyzed synthesis of ₱N-substituted aminoacrylates. <i>Comptes Rendus Chimie</i> , 2008 , 11, 612-6	51 2 97	14
117	Novel Synthesis of Cyclic ∃-Amino Acid Esters via Ene Reaction and Ruthenium-catalyzed Ring Rearrangement. <i>Synlett</i> , 2001 , 2001, 0621-0622	2.2	14
116	A New Route to Functional ∃-Enones via Prop-2-ynyl Alcohol Derivatives and Carbonates. <i>Synlett</i> , 1992 , 1992, 453-454	2.2	14
115	Wood liquefaction with hydrogen or helium in the presence of iron additives. <i>Canadian Journal of Chemical Engineering</i> , 1985 , 63, 634-638	2.3	14
114	Site-Selective Ruthenium-Catalyzed C-H Bond Arylations with Boronic Acids: Exploiting Isoindolinones as a Weak Directing Group. <i>Journal of Organic Chemistry</i> , 2019 , 84, 12893-12903	4.2	13
113	Ruthenium catalyzed 땂(sp)-H functionalization on the 'privileged' piperazine nucleus. <i>Chemical Communications</i> , 2017 , 53, 10448-10451	5.8	13
112	Palladium-Catalysed Regioselective Direct Arylations of Heteroarenes by Bromobenzamides: Direct Synthesis of Heteroaryl Benzamides. <i>ChemCatChem</i> , 2013 , 5, 1956-1963	5.2	13
111	Ruthenium(II)-(Arene)-N-Heterocyclic Carbene Complexes: Efficient and Selective Catalysts for the N-Alkylation of Aromatic Amines with Alcohols. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 2598-2606	2.3	12
110	Synthesis of ruthenium N-heterocyclic carbene complexes and their catalytic activity for Balkylation of tertiary cyclic amines. <i>Journal of Organometallic Chemistry</i> , 2015 , 799-800, 311-315	2.3	12
109	Selective Ruthenium-Catalyzed Hydrochlorination of Alkynes: One-Step Synthesis of Vinylchlorides. <i>Angewandte Chemie</i> , 2015 , 127, 12280-12283	3.6	12
108	Synthesis of CF3-Containing 1,2,3,4-Tetrahydroisoquinoline-3-Phosphonates via Regioselective Ruthenium-Catalyzed Co-cyclotrimerization of 1,7-Azaľdiynes. <i>Synlett</i> , 2013 , 24, 1517-1522	2.2	12
107	New 1,2,4,5-tetrakis-(N-imidazoliniummethyl)benzene and 1,2,4,5-tetrakis-(N-benzimidazoliummethyl)benzene salts as N-heterocyclic tetracarbene precursors: synthesis and involvement in ruthenium-catalyzed allylation reactions. <i>Tetrahedron</i> ,	2.4	12
106	2010 , 66, 1346-1351 Enantioselective hydrogenation of isomeric		12

105	A phenylethanoid glycoside and flavonoids from Phlomis crinita (Cav.) (Lamiaceae). <i>Biochemical Systematics and Ecology</i> , 2005 , 33, 813-816	1.4	12
104	Five glycosylated flavonoids from the antibacterial butanolic extract of Pituranthos scoparius. <i>Chemistry of Natural Compounds</i> , 2008 , 44, 639-641	0.7	11
103	New [Ru3(CO)12]-Based Catalysts with Imidazolinium Salt, Diimine, or Bis(oxazoline) Ligands and Ruthenium Bis(oxazoline) Complex for Tandem Isomerisation/Claisen Rearrangement of Dienyl Ethers [X-ray Structure of [RuCl{(R,R)-bis(isopropyloxazoline)}(p-cymene)]BF4. European Journal of	2.3	11
102	Inorganic Chemistry, 2003 , 2003, 4055-4064 Concomitant Monoreduction and Hydrogenation of Unsaturated Cyclic Imides to Lactams Catalyzed by Ruthenium Compounds. <i>Angewandte Chemie</i> , 2005 , 117, 2057-2059	3.6	11
101	Thermal degradation of tri-n-butyl phosphate. Journal of Analytical and Applied Pyrolysis, 1981, 3, 71-81	6	11
100	Palladium-Catalysed Cross-Coupling Reactions Controlled by Noncovalent Zn???N Interactions. <i>Chemistry - A European Journal</i> , 2017 , 23, 5033-5043	4.8	10
99	Nonconventional Supramolecular Self-Assemblies of Zinc(II)Balphen Building Blocks. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 5143-5151	2.3	10
98	Ruthenium(ii)-catalysed selective C(sp)-H bond benzoxylation of biologically appealing N-arylisoindolinones. <i>Organic and Biomolecular Chemistry</i> , 2019 , 17, 7517-7525	3.9	10
97	Reactivity of CH bonds of polychlorobenzenes for palladium-catalysed direct arylations with aryl bromides. <i>Catalysis Science and Technology</i> , 2014 , 4, 352-360	5.5	10
96	Stepwise catalytic transformations of renewable feedstock arising from plant oils. <i>European Journal of Lipid Science and Technology</i> , 2013 , 115, 490-500	3	10
95	Olefin metathesis transformations in thermomorphic multicomponent solvent systems. <i>Catalysis Communications</i> , 2015 , 63, 31-34	3.2	10
94	Sesquiterpene lactones and flavonoids from Centaurea foucauldiana. <i>Chemistry of Natural Compounds</i> , 2012 , 48, 510-511	0.7	10
93	Ruthenium-catalyzed selective N ,N-diallylation- and N ,N ,O-triallylation of free amino acids. <i>Organic and Biomolecular Chemistry</i> , 2009 , 7, 3906-9	3.9	10
92	Synthesis of stereo-defined 1,1,4,4-tetrahalo- and 1,1,4,4-mixed-tetrahalo-1,3-butadienes. <i>Tetrahedron Letters</i> , 2008 , 49, 624-627	2	10
91	Investigation of potential hybrid capacitor property of chelated N-Heterocyclic carbene Ruthenium(II) complex. <i>Journal of Organometallic Chemistry</i> , 2018 , 866, 214-222	2.3	9
90	Hydride-induced novel cyclization of dienedinitriles leading to multifunctionalized cyclopentadienes. <i>Organic Letters</i> , 2009 , 11, 4458-61	6.2	9
89	Preparation of Sugar Amino Acid Derivatives with Cyclic Structures by Ring-Closing Metathesis. <i>European Journal of Organic Chemistry</i> , 2010 , 2010, 6092-6096	3.2	9
88	Novel Two-Step Stereoselective Synthesis of (E)-Enamines and 1-Amino-1,3-dienes from Terminal Alkynes. <i>Synlett</i> , 1997 , 1997, 807-808	2.2	9

87	Ruthenium-Catalyzed Cyclotrimerization of 1,6- and 1,7-Azadiynes: New Access to Fluorinated Bicyclic Amino Acids. <i>Synlett</i> , 2008 , 2008, 578-582	2.2	9
86	Diterpenes and sterols from the roots of Salvia verbenaca subsp. clandestina. <i>Chemistry of Natural Compounds</i> , 2008 , 44, 824-825	0.7	9
85	Synthesis of New Perhydroindole Derivatives and Their Evaluation in Ruthenium-Catalyzed Hydrogen Transfer Reduction. <i>European Journal of Organic Chemistry</i> , 2008 , 2008, 934-940	3.2	9
84	Volatile Oil Constituents of Teucrium atratum Pomel from Algeria. <i>Journal of Essential Oil Research</i> , 2006 , 18, 175-177	2.3	9
83	Utilization of an industrial feedstock without separation. Ruthenium-catalysed hydrocarboxylation of propadiene and propyne. <i>Green Chemistry</i> , 1999 , 1, 183-185	10	9
82	Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives. <i>Oil and Gas Science and Technology</i> , 2016 , 71, 19	1.9	9
81	Merging Transition-Metal Catalysis with Phthalimides: A New Entry to Useful Building Blocks. <i>Synthesis</i> , 2018 , 50, 4216-4228	2.9	9
80	Olefin Metathesis in Green Organic Solvents and without Solvent 2014 , 523-535		8
79	Dendralenes Preparation via Eneline Cross-Metathesis from In Situ Generated 1,3-Enynes. <i>ChemCatChem</i> , 2011 , 3, 1876-1879	5.2	8
78	Ruthenium Complexes Bearing Bulky Pentasubstituted Cyclopentadienyl Ligands and Evaluation of [Ru(屆-C5Me4R)(MeCN)3][PF6] Precatalysts in Nucleophilic Allylic Substitution Reactions. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 3212-3217	2.3	8
77	Flavonoid glycosides from Reseda villosa (Resedaceae). <i>Biochemical Systematics and Ecology</i> , 2006 , 34, 777-779	1.4	8
76	Synthesis of Functional Oxazolidin-2-ones and Oxadiazin-2-ones in Two Steps from CO2 via Cyclic ⊞-Methylene Carbonates. <i>Synlett</i> , 1993 , 1993, 423-424	2.2	8
75	New sesquiterpene lactone and other constituents from Centaurea sulphurea (Asteraceae). <i>Natural Product Communications</i> , 2010 , 5, 849-50	0.9	8
74	New fluorinated catalysts for olefin metathesis. <i>Mendeleev Communications</i> , 2016 , 26, 474-476	1.9	7
73	Novel olefin metathetis catalysts with fluorinated N-alkyl-N´-arylimidazolin-2-ylidene ligands. <i>Russian Chemical Bulletin</i> , 2017 , 66, 1601-1606	1.7	7
72	Efficient Domino Hydroformylation/Benzoin Condensation: Highly Selective Synthesis of ⊞-Hydroxy Ketones. <i>Chemistry - A European Journal</i> , 2015 , 21, 18033-7	4.8	7
71	10 Catalytic conversion of biosourced raw materials: homogeneous catalysis		7
70	Stereoselective synthesis of 歌etoesters from prop-2-yn-1-ols. <i>Tetrahedron</i> , 1997 , 53, 9241-9252	2.4	7

69	Allenes and Cumulenes 2005 , 1019-1081		7	
68	Identification of thermal degradation products from diuron and iprodione. <i>Journal of Agricultural and Food Chemistry</i> , 1982 , 30, 180-182	5.7	7	
67	Base-controlled product switch in the ruthenium-catalyzed protodecarbonylation of phthalimides: a mechanistic study. <i>Catalysis Science and Technology</i> , 2020 , 10, 180-186	5.5	7	
66	Silver-Catalyzed Hydrogenation of Ketones under Mild Conditions. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 786-790	5.6	7	
65	Syntheses and characterization of molecular weight enlarged olefin metathesis pre-catalysts. <i>Comptes Rendus Chimie</i> , 2017 , 20, 717-723	2.7	6	
64	Synthesis and conformational studies of 日/東,3-peptides derived from alternating 畢,3-amino acids and L-Ala repeats. <i>New Journal of Chemistry</i> , 2015 , 39, 3295-3309	3.6	6	
63	Cross metathesis of unsaturated epoxides for the synthesis of polyfunctional building blocks. <i>Beilstein Journal of Organic Chemistry</i> , 2015 , 11, 1876-80	2.5	6	
62	Ruthenium Catalysts for Controlled Mono- and Bis-Allylation of Active Methylene Compounds with Aliphatic Allylic Substrates. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 2724-2728	5.6	6	
61	Thermal [2+2] Cycloaddition of CF3-Substituted Allenynes: Access to Novel Cyclobutene-Containing ∃-Amino Acids. <i>Synlett</i> , 2011 , 2011, 2321-2324	2.2	6	
60	Palladium-Catalysed Direct Heteroarylations of Heteroaromatics Using Esters as Blocking Groups at C2 of Bromofuran and Bromothiophene Derivatives: A´One-Step Access to Biheteroaryls. <i>Synlett</i> , 2012 , 23, 2077-2082	2.2	6	
59	Ruthenium-catalyzed tandem allylic substitution/isomerization: a direct route to propiophenones from cinnamyl chloride derivatives. <i>New Journal of Chemistry</i> , 2008 , 32, 929	3.6	6	
58	Ruthenium-Catalyzed One-Step Transformation of Propargylic Alcohols into Alkylidene Cyclobutenes: X-ray Characterization of an Ru(IB-cyclobutenyl) Intermediate. <i>Angewandte Chemie</i> , 2001 , 113, 2996-2999	3.6	6	
57	First elaboration of an olefin metathesis catalytic membrane by grafting a Hoveydallrubbs precatalyst on zirconia membranes. <i>Comptes Rendus Chimie</i> , 2017 , 20, 952-966	2.7	5	
56	2,2'-Dipyridylamines: more than just sister members of the bipyridine family. Applications and achievements in homogeneous catalysis and photoluminescent materials. <i>Dalton Transactions</i> , 2019 , 48, 11599-11622	4.3	5	
55	Acetals from primary alcohols with the use of tridentate proton responsive phosphinepyridonate iridium catalysts. <i>RSC Advances</i> , 2016 , 6, 100554-100558	3.7	5	
54	Ring Closing and Macrocyclization of 即ipeptides by Olefin Metathesis. <i>European Journal of Organic Chemistry</i> , 2013 , 2013, 6433-6442	3.2	5	
53	Ruthenium(II) and Iridium(III) Complexes Bearing Phosphinepyridonate and Phosphinequinolinolate Chelates. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 4312-4317	2.3	5	
52	Synthesis and Applications in Catalysis of Metal Complexes with Chelating Phosphinosulfonate Ligands. <i>Advances in Organometallic Chemistry</i> , 2014 , 159-218	3.8	5	

51	Palladium-Catalyzed Synthesis of Functional Tetralins via Benzylic Activation. <i>Advanced Synthesis and Catalysis</i> , 2007 , 349, 841-845	5.6	5
50	Carbon-rich Organoruthenium and Selective Catalytic Transformations of Alkynes 1997 , 1-20		5
49	Transformations of bio-sourced 4-hydroxyphenylpropanoids based on olefin metathesis. <i>ChemCatChem</i> , 2020 , 12, 5000-5021	5.2	5
48	Ruthenium Indenylidene Catalysts for Alkene Metathesis 2015 , 389-416		4
47	Investigation of hybrid-capacitor properties of ruthenium complexes. <i>International Journal of Energy Research</i> , 2019 , 43, 6840	4.5	4
46	SYNTHESIS OF NOVEL ANTIBACTERIAL METAL FREE AND METALLOPHTHALOCYANINES APPENDING WITH FOUR PERIPHERAL COUMARIN DERIVATIVES AND THEIR SEPARATION OF STRUCTURAL ISOMERS. <i>Heterocycles</i> , 2013 , 87, 2283	0.8	4
45	Access to Functionalized <code>\B-Trifluoromethyl-\B-aminophosphonates</code> via Intermolecular Eneline Metathesis. <i>Synlett</i> , 2014 , 25, 2624-2628	2.2	4
44	Flavonoids from Centaurea sulphurea. <i>Chemistry of Natural Compounds</i> , 2011 , 46, 966-967	0.7	4
43	Hydrogenation of IN-substituted enaminoesters in the presence of ruthenium catalysts. <i>Journal of Organometallic Chemistry</i> , 2010 , 695, 870-874	2.3	4
42	Two coumarins and a thienylbutylamide from Anacyclus cyrtolepioides from the Algerian Septentrional Sahara. <i>Chemistry of Natural Compounds</i> , 2007 , 43, 612-613	0.7	4
41	Nucleophilic Additions to Alkynes and Reactions via Vinylidene Intermediates 2005, 189-217		4
40	Direct Preparation of N-(Alk-1-en-1-yl)carbamates from Cyclic Ketones and Unsubstituted Carbamates. <i>Collection of Czechoslovak Chemical Communications</i> , 2002 , 67, 235-244		4
39	Thermal degradation of chlorophenoxy acid herbicides. <i>Journal of Agricultural and Food Chemistry</i> , 1988 , 36, 649-653	5.7	4
38	Functionalization of (-)-即inene and (-)-limonene via cross metathesis with symmetrical internal olefins. <i>Catalysis Communications</i> , 2020 , 135, 105893	3.2	4
37	Cationic versus anionic Pt complex: The performance analysis of a hybrid-capacitor, DFT calculation and electrochemical properties. <i>Polyhedron</i> , 2019 , 157, 434-441	2.7	4
36	sp3日p3 carbon日arbon bond formation using 2-alkylazoles and a bromoacrylate as the reaction partners. <i>Tetrahedron Letters</i> , 2015 , 56, 4354-4358	2	3
35	Ene-yne Cross-Metathesis for the Preparation of 2,3-Diaryl-1,3-dienes. <i>Catalysts</i> , 2017 , 7, 365	4	3
34	A New Access to the 6,8-Dioxabicyclo[3.2.1]octane Ring System Using a Three-Component Reaction: Enantioselective Synthesis of (+)-iso-exo-Brevicomin. <i>Synlett</i> , 2010 , 2010, 207-210	2.2	3

(2021-2004)

33	Comparative Phytochemical Study of the Butanolic Extracts of Two Algerian Phlomis Species. <i>Chemistry of Natural Compounds</i> , 2004 , 40, 188-189	0.7	3
32	Ruthenium-catalyzed Regioselective Synthesis of Dienol Diesters. <i>Journal of Chemical Research Synopses</i> , 1999 , 249-249		3
31	Thermal behavior of some glycol ethers. <i>Industrial & Engineering Chemistry Product Research and Development</i> , 1982 , 21, 74-76		3
30	Thermal degradation of oxadiazon. Journal of Agricultural and Food Chemistry, 1982, 30, 772-775	5.7	3
29	Acceptorless and Base-Free Dehydrogenation of Alcohols Mediated by a Dipyridylamine-Iridium(III) Catalyst. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 4326-4330	3.2	3
28	Alkene Metathesis for Transformations of Renewables. <i>Topics in Organometallic Chemistry</i> , 2018 , 77-10	2 0.6	3
27	[Cp*Ru]-catalyzed selective coupling/hydrogenation. <i>Catalysis Science and Technology</i> , 2015 , 5, 1650-16	5 57 .5	2
26	Tandem hydroformylation/isomerization/hydrogenation of bio-derived 1-arylbutadienes for the regioselective synthesis of branched aldehydes. <i>Applied Catalysis A: General</i> , 2020 , 598, 117583	5.1	2
25	RTILs in Catalytic Olefin Metathesis Reactions. <i>Topics in Organometallic Chemistry</i> , 2013 , 287-305	0.6	2
24	Ruthenium- and palladium-catalyzed synthesis of polyfunctional 1,3-dienes. <i>Russian Chemical Bulletin</i> , 1998 , 47, 913-917	1.7	2
23	Ruthenium Allenylidenes and Indenylidenes as Catalysts in Alkene Metathesis251-277		2
22	Ruthenium-Catalyzed Transformations of Cyclopropylethynes. <i>Synthesis</i> , 2007 , 2007, 3574-3588	2.9	2
21	Tertiary 3-Aminopropenones and 3-Aminopropenoates: Their Preparation, with and without Lewis Acids, from Secondary Amines and 1,3-Diketo Compounds. <i>Synthesis</i> , 2007 , 2007, 731-738	2.9	2
20	Thermal degradation of amphetamine sulphate. <i>Journal of Analytical and Applied Pyrolysis</i> , 1985 , 7, 307	-3⁄13	2
19	Ruthenium Carbenes as Catalysts for Alkene Metathesis 2003 , 23-42		2
18	Fluorine-containing ruthenium-based olefin metathesis catalysts. <i>Russian Chemical Reviews</i> , 2021 , 90, 419-450	6.8	2
17	Direct Access to (-´)-10-Desbromoarborescidine A from Tryptamine and Pentane-1,5-diol. <i>Asian Journal of Organic Chemistry</i> , 2020 , 9, 910-913	3	2
16	Ruthenium-catalysed oxidative coupling of vinyl derivatives and application in tandem hydrogenation. <i>Catalysis Science and Technology</i> , 2021 , 11, 5772-5776	5.5	2

15	Cross metathesis of (-)-#pinene, (-)-limonene and terpenoids derived from limonene with internal olefins. <i>Applied Catalysis A: General</i> , 2021 , 623, 118284	5.1	2
14	Pentamethylcyclopentadienyltris(acetonitrile)ruthenium(II) Hexafluorophosphate 2008,		1
13	Thermal degradation of dibutyltin oxide. Journal of Analytical and Applied Pyrolysis, 1989, 16, 183-190	6	1
12	Mild pyrolysis of phosalone. <i>Journal of Analytical and Applied Pyrolysis</i> , 1986 , 10, 107-116	6	1
11	Chemical Influence of the Oils Obtained by Hydropyrolysis of Wood. ACS Symposium Series, 1988, 220-2	2 7 .4	1
10	Asymmetric (Transfer) Hydrogenation of Functionalized Alkenes During the Past Decade 2021 , 25-53		1
9	Ruthenium Catalyzed Regioselective IC(sp3)II Functionalization of N-Alkyl-N?-plitrophenyl Substituted Piperazines using Aldehydes as Alkylating Agents. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 453-458	5.6	1
8	Catalytic Cycloisomerization of Enynes Involving Various Activation Processes. <i>NATO Science Series Series II, Mathematics, Physics and Chemistry</i> , 2007 , 375-394		1
7	Synthesis of Bioactives Coumarin Derivatives, Phthalocyanines and Terminal Conjugated Dienes via a Ruthenium Catalyzed Cross-Metathesis: Application to Renewable Resources. <i>Materials Science Forum</i> , 2016 , 842, 1-45	0.4	
6	2-(Diphenylphosphino)benzenesulfonic Acid 2014 , 1-5		
5	Direct Preparation of N-(Alk-1-en-1-yl)carbamates from Cyclic Ketones and Unsubstituted Carbamates. <i>ChemInform</i> , 2010 , 33, 99-99		
4	Ring Closing Versus Cyclic Isomerization of 1,6-Dienes by Ruthenium Allenylidene Complexes 2003 , 28	5-293	
3	Catalytic Incorporation of CO2 for the Synthesis of Organic Compounds 1990 , 65-77		
2	Pierre Dixneuf: A Pioneering Career in Organometallic Chemistry Highlighting Ruthenium as a Star Metal in Homogeneous Catalysis. <i>Organometallics</i> , 2021 , 40, 1551-1554	3.8	

Alkane-Related C?H Bond Activation and Functionalization of Aliphatic Amines 2018, 567-594