List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3458241/publications.pdf Version: 2024-02-01

<u> Снонули Сио</u>

#	Article	IF	CITATIONS
1	Reduction of graphene oxide via <scp>l</scp> -ascorbic acid. Chemical Communications, 2010, 46, 1112-1114.	2.2	2,098
2	Biocompatibility of Graphene Oxide. Nanoscale Research Letters, 2011, 6, 8.	3.1	728
3	Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir, 2010, 26, 6083-6085.	1.6	498
4	Folic Acid-conjugated Graphene Oxide loaded with Photosensitizers for Targeting Photodynamic Therapy. Theranostics, 2011, 1, 240-250.	4.6	491
5	Photo-Fenton Reaction of Graphene Oxide: A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage. ACS Nano, 2012, 6, 6592-6599.	7.3	478
6	Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene. Journal of Physical Chemistry C, 2011, 115, 11957-11961.	1.5	304
7	Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale, 2013, 5, 1816.	2.8	245
8	Assembly of Graphene Oxide–Enzyme Conjugates through Hydrophobic Interaction. Small, 2012, 8, 154-159.	5.2	234
9	Horseradish Peroxidase Immobilized on Graphene Oxide: Physical Properties and Applications in Phenolic Compound Removal. Journal of Physical Chemistry C, 2010, 114, 8469-8473.	1.5	204
10	Fingerprinting photoluminescence of functional groups in graphene oxide. Journal of Materials Chemistry, 2012, 22, 23374.	6.7	198
11	Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnology Reviews, 2013, 2, 27-45.	2.6	198
12	Insight into the Cellular Internalization and Cytotoxicity of Graphene Quantum Dots. Advanced Healthcare Materials, 2013, 2, 1613-1619.	3.9	182
13	Enhancing Cell Nucleus Accumulation and DNA Cleavage Activity of Anti-Cancer Drug via Graphene Quantum Dots. Scientific Reports, 2013, 3, 2852.	1.6	158
14	DNA Cleavage System of Nanosized Graphene Oxide Sheets and Copper lons. ACS Nano, 2010, 4, 7169-7174.	7.3	150
15	Effect of Lateral Size of Graphene Quantum Dots on Their Properties and Application. ACS Applied Materials & Interfaces, 2016, 8, 2104-2110.	4.0	95
16	Composite of graphene quantum dots and Fe ₃ O ₄ nanoparticles: peroxidase activity and application in phenolic compound removal. RSC Advances, 2014, 4, 3299-3305.	1.7	81
17	Individual nanocomposite sheets of chemically reduced graphene oxide and poly(N-vinyl pyrrolidone): preparation and humidity sensing characteristics. Journal of Materials Chemistry, 2010, 20, 10824.	6.7	78
18	Green controllable synthesis of silver nanomaterials on graphene oxide sheets via spontaneous reduction. RSC Advances, 2012, 2, 3816.	1.7	78

#	Article	IF	CITATIONS
19	TiO2 nanotubes wrapped with reduced graphene oxide as a high-performance anode material for lithium-ion batteries. Scientific Reports, 2016, 6, 36580.	1.6	76
20	Control on the formation of Fe ₃ O ₄ nanoparticles on chemically reduced graphene oxide surfaces. CrystEngComm, 2012, 14, 499-504.	1.3	71
21	Rolling up graphene oxide sheets into micro/nanoscrolls by nanoparticle aggregation. Journal of Materials Chemistry, 2012, 22, 17441.	6.7	71
22	Graphene quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1997-2006.	1.7	71
23	Fe-doped SiC/SiO2 composites with ordered inter-filled structure for effective high-temperature microwave attenuation. Materials and Design, 2016, 92, 563-570.	3.3	71
24	Morphology Design of Co-electrospinning MnO-VN/C Nanofibers for Enhancing the Microwave Absorption Performances. ACS Applied Materials & Interfaces, 2020, 12, 13208-13216.	4.0	71
25	Sweet potato-derived carbon nanoparticles as anode for lithium ion battery. RSC Advances, 2015, 5, 40737-40741.	1.7	70
26	Glass carbon electrode modified with horseradish peroxidase immobilized on partially reduced graphene oxide for detecting phenolic compounds. Journal of Electroanalytical Chemistry, 2012, 681, 49-55.	1.9	68
27	Selective oxidation of veratryl alcohol with composites of Au nanoparticles and graphene quantum dots as catalysts. Chemical Communications, 2015, 51, 6318-6321.	2.2	67
28	Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries. Scientific Reports, 2016, 6, 35620.	1.6	55
29	Stabilization and Induction of Oligonucleotide i-Motif Structure <i>via</i> Graphene Quantum Dots. ACS Nano, 2013, 7, 531-537.	7.3	50
30	Ion-matching porous carbons with ultra-high surface area and superior energy storage performance for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 9163-9172.	5.2	47
31	Composites of Graphene and LiFePO4 as Cathode Materials for Lithium-Ion Battery: A Mini-review. Nano-Micro Letters, 2014, 6, 316-326.	14.4	44
32	Lamellar vanadium nitride nanowires encapsulated in graphene for electromagnetic wave absorption. Chemical Engineering Journal, 2019, 378, 122203.	6.6	44
33	Control of the formation of rod-like ZnO mesocrystals and their photocatalytic properties. CrystEngComm, 2013, 15, 2608-2615.	1.3	43
34	Multilayer graphene spheres generated from anthracite and semi-coke as anode materials for lithium-ion batteries. Fuel Processing Technology, 2020, 198, 106241.	3.7	43
35	Composites of chemically-reduced graphene oxide sheets and carbon nanospheres with three-dimensional network structure as anode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 23194.	6.7	41
36	Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity. Nanoscale Research Letters, 2011, 6, 450.	3.1	39

#	Article	IF	CITATIONS
37	Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide. ACS Nano, 2015, 9, 7913-7924.	7.3	39
38	The creation of nanojunctions. Nanoscale, 2010, 2, 2521.	2.8	37
39	A Highâ€Performance Primary Nanosheet Heterojunction Cathode Composed of Na _{0.44} MnO ₂ Tunnels and Layered Na ₂ Mn ₃ O ₇ for Naâ€Ion Batteries. ChemSusChem, 2020, 13, 1793-1799.	3.6	35
40	TiO2/carbon nanofibers doped with phosphorus as anodes for hybrid Li-ion capacitors. Journal of Power Sources, 2020, 473, 228551.	4.0	34
41	Enhanced Performance by Enlarged Nano-pores of Holly Leaf-derived Lamellar Carbon for Sodium-ion Battery Anode. Scientific Reports, 2016, 6, 26246.	1.6	33
42	N-doped graphene-wrapped TiO2 nanotubes with stable surface Ti3+ for visible-light photocatalysis. Applied Surface Science, 2020, 512, 144549.	3.1	33
43	Solutionâ€Processable Graphene Quantum Dots. ChemPhysChem, 2013, 14, 2627-2640.	1.0	32
44	Composites of Layered M(HPO ₄) ₂ (M = Zr, Sn, and Ti) with Reduced Graphene Oxide as Anode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 2612-2618.	4.0	31
45	Preparation of nitrogen and sulfur co-doped ordered mesoporous carbon for enhanced microwave absorption performance. Nanotechnology, 2017, 28, 375705.	1.3	30
46	Graphene Quantum Dots Downregulate Multiple Multidrugâ€Resistant Genes via Interacting with Their Câ€Rich Promoters. Advanced Healthcare Materials, 2017, 6, 1700328.	3.9	30
47	Effects of Sodium Alginate on the Composition, Morphology, and Electrochemical Properties of Electrospun Carbon Nanofibers as Electrodes for Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 632-640.	3.2	30
48	Enhanced Electrochemical Performance of Lithium Iron(II) Phosphate Modified Cooperatively via Chemically Reduced Graphene Oxide and Polyaniline. Electrochimica Acta, 2015, 173, 310-315.	2.6	27
49	Composites of Graphene Quantum Dots and Reduced Graphene Oxide as Catalysts for Nitroarene Reduction. ACS Omega, 2017, 2, 7293-7298.	1.6	27
50	Nuclease Activity and Cytotoxicity Enhancement of the DNA Intercalators via Graphene Oxide. Journal of Physical Chemistry C, 2012, 116, 15839-15846.	1.5	26
51	One-step synthesis of Fe3O4@C nanotubes for the immobilization of adriamycin. Journal of Materials Chemistry, 2011, 21, 12224.	6.7	25
52	Photothermally Driven Refreshable Microactuators Based on Graphene Oxide Doped Paraffin. ACS Applied Materials & Interfaces, 2017, 9, 26476-26482.	4.0	25
53	Hierarchical TiO2-x nanoarchitectures on Ti foils as binder-free anodes for hybrid Li-ion capacitors. Journal of Colloid and Interface Science, 2019, 555, 791-800.	5.0	25
54	Composites of boron-doped carbon nanosheets and iron oxide nanoneedles: fabrication and lithium ion storage performance. Journal of Materials Chemistry A, 2014, 2, 9111-9117.	5.2	24

#	Article	IF	CITATIONS
55	Composites of graphene oxide and epoxy resin assuming a uniform 3D graphene oxide network structure. RSC Advances, 2016, 6, 86904-86908.	1.7	24
56	Hierarchical porous reduced graphene oxide decorated with molybdenum disulfide for high-performance supercapacitors. Electrochimica Acta, 2018, 292, 639-645.	2.6	24
57	Co3O4 Nanosheet Arrays on Ni Foam as Electrocatalyst for Oxygen Evolution Reaction. Electrocatalysis, 2018, 9, 653-661.	1.5	23
58	Dual Role of Graphene Quantum Dots in Active Layer of Inverted Bulk Heterojunction Organic Photovoltaic Devices. ACS Omega, 2019, 4, 16159-16165.	1.6	23
59	Molten salt assisted synthesis and electromagnetic wave absorption properties of (V _{1â^'xâ^'y} Ti _x Cr _y) ₂ AlC solid solutions. Journal of Materials Chemistry C, 2021, 9, 7697-7705.	2.7	23
60	Graphene oxide doped poly(vinylidene fluoride-co-hexafluoropropylene) gel electrolyte for lithium ion battery. lonics, 2017, 23, 2045-2053.	1.2	21
61	Graphene quantum dots in photodynamic therapy. Nanoscale Advances, 2020, 2, 4961-4967.	2.2	21
62	Core–Shell PMIA@PVdF-HFP/Al ₂ O ₃ Nanofiber Mats <i>In Situ</i> Coaxial Electrospun on LiFePO ₄ Electrode as Matrices for Gel Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 9875-9884.	4.0	21
63	Electron Transfer from Graphene Quantum Dots to the Copper Complex Enhances Its Nuclease Activity. Journal of Physical Chemistry C, 2014, 118, 7637-7642.	1.5	20
64	Large scale production of graphene quantum dots through the reaction of graphene oxide with sodium hypochlorite. RSC Advances, 2016, 6, 54644-54648.	1.7	20
65	Tunable CuS nanocables with hierarchical nanosheet-assembly for ultrafast and long-cycle life sodium-ion storage. Ceramics International, 2021, 47, 14138-14145.	2.3	20
66	Sulfur/nitrogen dual-doped three-dimensional reduced graphene oxide modified with mesoporous TiO2 nanoparticles for promising lithium-ion battery anodes. Journal of Alloys and Compounds, 2021, 868, 159183.	2.8	20
67	Flower-like TiO2 hollow microspheres with mixed-phases for high-pseudocapacitive lithium storage. Journal of Alloys and Compounds, 2022, 902, 163730.	2.8	20
68	Li4Ti5O12 hollow mesoporous microspheres assembled from nanoparticles for high rate lithium-ion battery anodes. RSC Advances, 2015, 5, 35643-35650.	1.7	19
69	Low-temperature preparation of mesoporous TiO2 honeycomb-like structure on TiO2 nanotube arrays as binder-free anodes for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 863, 114088.	1.9	19
70	Hydrated vanadium pentoxide/reduced graphene oxide composite cathode material for high-rate lithium ion batteries. Journal of Colloid and Interface Science, 2021, 585, 347-354.	5.0	19
71	Ditungsten carbide nanoparticles homogeneously embedded in carbon nanofibers for efficient hydrogen production. Chemical Engineering Journal, 2021, 420, 130480.	6.6	19
72	Boosting High-Rate Sodium Storage of CuS via a Hollow Spherical Nanostructure and Surface Pseudocapacitive Behavior. ACS Applied Energy Materials, 2021, 4, 8901-8909.	2.5	18

#	Article	IF	CITATIONS
73	Effects of the Inherent Tubular Structure and Graphene Coating on the Lithium Ion Storage Performances of Electrospun NiO/Co ₃ O ₄ Nanotubes. Journal of Physical Chemistry C, 2020, 124, 143-151.	1.5	17
74	Improving the electrochemical properties of lithium iron(II) phosphate through surface modification with manganese ion(II) and reduced graphene oxide. Journal of Solid State Electrochemistry, 2018, 22, 285-292.	1.2	15
75	Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption. Journal of Materials Science and Technology, 2022, 111, 236-244.	5.6	14
76	Reduction of graphene oxide by Ar-H2 mixture gase at 200°C with the aid of Pd. Journal of Alloys and Compounds, 2017, 703, 10-12.	2.8	13
77	Mass Transport Effect on Graphene Based Enzyme Electrochemical Biosensor for Oxalic Acid Detection. Journal of the Electrochemical Society, 2017, 164, B29-B33.	1.3	13
78	Insight into the Formation/Decomposition of Solid Electrolyte Interphase Films and Effects on the Electrochemical Properties of Sn/Graphene Anodes. Journal of Physical Chemistry C, 2018, 122, 25211-25218.	1.5	13
79	Carbon-Coated Mn ₄ N Nanowires with Abundant Internal Voids for Microwave Absorption. ACS Applied Nano Materials, 2019, 2, 7848-7855.	2.4	13
80	Achieving ion accessibility within graphene films by carbon nanofiber intercalation for high mass loading electrodes in supercapacitors. Journal of Power Sources, 2021, 513, 230559.	4.0	13
81	The rational design of nickel-cobalt selenides@selenium nanostructures by adjusting the synthesis environment for high-performance sodium-ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 547-558.	3.0	13
82	Flexible Mo ₂ Câ€Modified SiC/C Nanofibers for BroadBand Electromagnetic Wave Absorption. Advanced Materials Interfaces, 2022, 9, .	1.9	13
83	Hollow Sodium Tungsten Bronze (Na0.15WO3) Nanospheres: Preparation, Characterization, and Their Adsorption Properties. Nanoscale Research Letters, 2009, 4, 1241-6.	3.1	12
84	Au/graphene quantum dots/ferroferric oxide composites as catalysts for the solvent-free oxidation of alcohols. Materials Letters, 2016, 183, 227-231.	1.3	12
85	In situ fabrication of flaky-like NiMn-layered double hydroxides as efficient catalyst for Li-O2 battery. Journal of Solid State Electrochemistry, 2019, 23, 1121-1128.	1.2	12
86	Boosting the electrocatalytic activity of hollow NiCo layered double hydroxides nanocages via a self-regulating support effect: A highly efficient oxygen electrode for lithium-oxygen batteries. Applied Surface Science, 2021, 558, 149888.	3.1	12
87	Tunable microwave absorption band via rational design of C@TiC nanospheres. Ceramics International, 2022, 48, 15576-15581.	2.3	12
88	Boosting Sodium Storage of Hierarchical Nanofibers with Porous Carbon-Supported Anatase TiO ₂ /TiO ₂ (B) Nanowires. ACS Applied Energy Materials, 2022, 5, 3447-3453.	2.5	12
89	MXene-supported NiMn-LDHs as efficient electrocatalysts towards enhanced oxygen evolution reactions. Materials Advances, 2022, 3, 4359-4368.	2.6	12
90	Metastable intermolecular composites of Al and CuO nanoparticles assembled with graphene quantum dots. RSC Advances, 2017, 7, 1718-1723.	1.7	11

#	Article	IF	CITATIONS
91	Gold nanoparticles stabilized by graphene quantum dots as catalysts for C C bond cleavage in β-O-4 lignin model compounds. Inorganic Chemistry Communication, 2019, 104, 105-109.	1.8	11
92	Fe2Mo3O8 nanoparticles self-assembling 3D mesoporous hollow spheres toward superior lithium storage properties. Frontiers of Chemical Science and Engineering, 2021, 15, 156-163.	2.3	11
93	Top-down tailoring of nanostructured manganese molybdate enhances its lithium storage properties. CrystEngComm, 2019, 21, 5374-5381.	1.3	10
94	Carbon Nanofibers Cross-Linked and Decorated with Graphene Quantum Dots as Binder-Free Electrodes for Flexible Supercapacitors. Journal of Physical Chemistry C, 2021, 125, 143-151.	1.5	10
95	Anthracite-derived carbon-based electrode materials for high performance lithium ion capacitors. Fuel Processing Technology, 2022, 228, 107146.	3.7	10
96	Interactions of the primers and Mg ²⁺ with graphene quantum dots enhance PCR performance. RSC Advances, 2015, 5, 74515-74522.	1.7	9
97	Three-dimensional composite of Co ₃ O ₄ nanoparticles and nitrogen-doped reduced graphene oxide for lignin model compound oxidation. New Journal of Chemistry, 2018, 42, 11117-11123.	1.4	9
98	Cladding transition metal oxide particles with graphene oxide sheets: an efficient protocol to improve their structural stability and lithium ion diffusion rate. Journal of Solid State Electrochemistry, 2019, 23, 2969-2977.	1.2	9
99	Vanadium nitride@carbon nanowires with inner porous structure for high-efficient microwave absorption. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115156.	1.7	9
100	Effects of polypyrrole and chemically reduced graphene oxide on electrochemical properties of lithium iron (II) phosphate. Journal of Solid State Electrochemistry, 2017, 21, 3021-3028.	1.2	9
101	Effect of aluminium doping amount on the electrochemical properties of ZnO nanoparticles as anode for lithium ion batteries. Micro and Nano Letters, 2015, 10, 217-219.	0.6	8
102	Flexible micro-supercapacitors assembled via chemically reduced graphene oxide films assisted by a laser printer. Nanotechnology, 2018, 29, 43LT01.	1.3	8
103	Separating graphene quantum dots by lateral size through gel column chromatography. RSC Advances, 2019, 9, 18898-18901.	1.7	8
104	Gold Electrode Fused with AuNPs/GQDs Showing Enhanced Electrochemical Performance for Detection of Phenolic Compounds. Journal of the Electrochemical Society, 2019, 166, B1707-B1711.	1.3	8
105	Reinforce the Adhesion of Gel Electrolyte to Electrode and the Interfacial Charge Transfer via In Situ Electrospinning the Polymeric Nanofiber Matrix. Energy Technology, 2021, 9, 2000865.	1.8	8
106	Graphene quantum dots with Zn ²⁺ and Ni ²⁺ conjugates can cleave supercoiled DNA. Journal of Coordination Chemistry, 2016, 69, 3395-3402.	0.8	7
107	Fluorine-free ionic liquid based on thiocyanate anion with propylene carbonate as electrolytes for supercapacitors: Effects of concentration and temperature. Chemical Research in Chinese Universities, 2017, 33, 779-784.	1.3	7
108	Ordered mesoporous inter-filled SiC/SiO2 composites with high-performance microwave absorption by adding ethylenediamine. Journal of Materials Science, 2017, 52, 13163-13172.	1.7	7

#	Article	IF	CITATIONS
109	Oneâ€Pot Solvothermal Synthesis of Molybdenumâ€Tungsten Chalcogenide/Carbon Composite Electrodes for Asymmetric Supercapacitors. ChemElectroChem, 2018, 5, 3893-3900.	1.7	7
110	Graphene Quantum Dots Band Structure Tuned by Size for Efficient Organic Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900657.	0.8	7
111	Almond Shellâ€Derived Carbons under Lowâ€Temperature Activation with Ultraâ€High Surface Area and Superior Performance for Supercapacitors. ChemistrySelect, 2019, 4, 12472-12478.	0.7	7
112	Direct Pyrolysis of Molybdophosphate-based Ionic Salt for One-step Synthesis of N,P Co-doped Carbon/MoO3-x Hybrids with Superior Lithium Storage Performance. Chemical Research in Chinese Universities, 2019, 35, 842-847.	1.3	6
113	Multilayer graphene sheets converted directly from anthracite in the presence of molten iron and their applications as anode for lithium ion batteries. Synthetic Metals, 2020, 263, 116364.	2.1	6
114	Phase-pure ditungsten carbide nanoparticles covered by carbon as efficient electrocatalysts for hydrogen evolution reaction. Ceramics International, 2021, 47, 12228-12233.	2.3	6
115	Boron nitride nanosheets decorated N-doped carbon nanofibers as a wide-band and lightweight electromagnetic wave absorber. Journal of Alloys and Compounds, 2022, 890, 161903.	2.8	6
116	Sn ₄ P ₃ Encapsulated in Carbon Nanotubes/Poly(3,4-ethylenedioxythiophene) as the Anode for Pseudocapacitive Lithium-Ion Storage. ACS Applied Energy Materials, 2022, 5, 2412-2420.	2.5	6
117	A flexible electrode of TiO2 nanowire arrays modified with graphene for solid-state cable-type supercapacitors. Ionics, 2020, 26, 971-979.	1.2	5
118	Regulating Lithium-Ion Transference Number of a Poly(vinyl alcohol)-Based Gel Electrolyte by the Incorporation of H ₃ BO ₃ as an Anion Trapper. ACS Applied Energy Materials, 2022, 5, 2873-2880.	2.5	5
119	Effects of Pulverization and Dead Sn Accumulation in SnO ₂ Nanorods Grown on Carbon Cloth on Their Electrochemical Performances as the Anode in Lithium Ion Batteries. ACS Applied Energy Materials, 2022, 5, 3536-3544.	2.5	5
120	Insights into the effects of different acids on the formation and electrochemical properties of carbon spherules. RSC Advances, 2016, 6, 37555-37561.	1.7	4
121	Nitrogen-doped carbon/SiOx composites from rice husks as a high-performance anode for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 16037-16043.	1.1	4
122	Nanocarved vanadium nitride nanowires encapsulated in lamellar graphene layers as supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 2021, 32, 21197-21205.	1.1	4
123	Hydrolysis of Organophosphorus Agents Catalyzed by Cobalt Nanoparticles Supported on Three-Dimensional Nitrogen-Doped Graphene. Inorganic Chemistry, 2021, 60, 17635-17640.	1.9	4
124	Catalytic Oxidation of Veratryl Alcohol Derivatives Using RuCo/rGO Composites. Chemistry - A European Journal, 2022, 28, .	1.7	4
125	Graphene: Insight into the Cellular Internalization and Cytotoxicity of Graphene Quantum Dots (Adv.) Tj ETQq1	1 0,784314	1 rgBT /Over
126	Temperature effect on morphology and electrochemical properties of nanostructured ZnO as anode for lithium ion batteries. Micro and Nano Letters, 2016, 11, 535-538.	0.6	3

#	Article	IF	CITATIONS
127	Sorting Graphene Quantum Dots by Using Aluminum Ions. European Journal of Inorganic Chemistry, 2017, 2201-2206.	1.0	3
128	Hierarchical Nanorods Constructed by Vertical WS ₂ Nanosheets on Carbon Nanotube Cores with Enhanced Lithium Storage Properties. ChemistrySelect, 2019, 4, 12779-12784.	0.7	3
129	Regulating the Heat Generation Power of a LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode by Coating with Reduced Graphene Oxide. ACS Applied Energy Materials, 2022, 5, 4622-4630.	2.5	3
130	Manganese dioxide nanoflakes anchored on reduced graphene oxide with superior electrochemical performance for supercapacitors. Micro and Nano Letters, 2017, 12, 147-150.	0.6	2
131	Oxidation of 1â€Phenylethaneâ€1,2â€Diol to 2â€Hydroxyâ€1â€Phenylethanâ€1â€One Catalyzed by Gold Nanoci ChemistrySelect, 2018, 3, 13638-13640.	rystals.	2
132	Rationally assembled rGO/Sn/Na ₂ Zr(PO ₄) ₂ nanocomposites as high performance anode materials for lithium and sodium ion batteries. Sustainable Energy and Fuels, 2019, 3, 1509-1516.	2.5	2
133	All carbon electrodes derived from semi-coke for electrochemical energy storage devices. Ionics, 2022, 28, 1685-1692.	1.2	2
134	Mechanism of force mode dip-pen nanolithography. Journal of Applied Physics, 2014, 115, 174314.	1.1	0
135	Effects of Preâ€Electroplated Metal or/and Graphene on the Initial Coulombic Efficiency of Graphite Anode. ChemElectroChem, 2021, 8, 3651.	1.7	0