Catherine E Lovelock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3458201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Australian blue carbon method to estimate climate change mitigation benefits of coastal wetland restoration. Restoration Ecology, 2023, 31, .	1.4	25
2	Modelling blue carbon farming opportunities at different spatial scales. Journal of Environmental Management, 2022, 301, 113813.	3.8	8
3	Rolling covenants to protect coastal ecosystems in the face of seaâ€level rise. Conservation Science and Practice, 2022, 4, e593.	0.9	7
4	Contrasting Effects of Local Environmental and Biogeographic Factors on the Composition and Structure of Bacterial Communities in Arid Monospecific Mangrove Soils. Microbiology Spectrum, 2022, 10, e0090321.	1.2	11
5	Modeled approaches to estimating blue carbon accumulation with mangrove restoration to support a blue carbon accounting method for Australia. Limnology and Oceanography, 2022, 67, .	1.6	16
6	Climate change mitigation and improvement of water quality from the restoration of a subtropical coastal wetland. Ecological Applications, 2022, 32, e2620.	1.8	13
7	Maximising resilience to sea-level rise in urban coastal ecosystems through systematic conservation planning. Landscape and Urban Planning, 2022, 221, 104374.	3.4	10
8	Opportunities for coastal wetland restoration for blue carbon with co-benefits for biodiversity, coastal fisheries, and water quality. Ecosystem Services, 2022, 55, 101423.	2.3	18
9	Ambitious global targets for mangrove and seagrass recovery. Current Biology, 2022, 32, 1641-1649.e3.	1.8	23
10	High-resolution mapping of losses and gains of Earth's tidal wetlands. Science, 2022, 376, 744-749.	6.0	138
11	Integrating blue: How do we make nationally determined contributions work for both blue carbon and local coastal communities?. Ambio, 2022, 51, 1978-1993.	2.8	16
12	Ecological development of mangrove plantations in the Bangladesh Delta. Forest Ecology and Management, 2022, 517, 120269.	1.4	14
13	Nature-based solutions for atoll habitability. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210124.	1.8	5
14	Operationalizing marketable blue carbon. One Earth, 2022, 5, 485-492.	3.6	34
15	Mangrove forests under climate change in a 2°C world. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, .	3.6	29
16	Losses of Soil Organic Carbon with Deforestation in Mangroves of Madagascar. Ecosystems, 2021, 24, 1-19.	1.6	39
17	Partial canopy loss of mangrove trees: Mitigating water scarcity by physical adaptation and feedback on porewater salinity. Estuarine, Coastal and Shelf Science, 2021, 248, 106797.	0.9	8
18	Limited relationships between mangrove forest structure and hydro-edaphic conditions in subtropical Queensland, Australia, Estuarine, Coastal and Shelf Science, 2021, 248, 106930	0.9	7

#	Article	IF	CITATIONS
19	High variance in community structure and ecosystem carbon stocks of Fijian mangroves driven by differences in geomorphology and climate. Environmental Research, 2021, 192, 110213.	3.7	10
20	Impact of an extreme monsoon on CO2 and CH4 fluxes from mangrove soils of the Ayeyarwady Delta, Myanmar. Science of the Total Environment, 2021, 760, 143422.	3.9	17
21	Drivers of bacterial diversity along a natural transect from freshwater to saline subtropical wetlands. Science of the Total Environment, 2021, 759, 143455.	3.9	5
22	Pandanus nutshell generates a palaeoprecipitation record for human occupation at Madjedbebe, northern Australia. Nature Ecology and Evolution, 2021, 5, 295-303.	3.4	9
23	Climateâ€driven impacts of exotic species on marine ecosystems. Global Ecology and Biogeography, 2021, 30, 1043-1055.	2.7	16
24	Future carbon emissions from global mangrove forest loss. Global Change Biology, 2021, 27, 2856-2866.	4.2	93
25	Spatial costâ€benefit analysis of blue restoration and factors driving net benefits globally. Conservation Biology, 2021, 35, 1850-1860.	2.4	12
26	Current and future carbon stocks in coastal wetlands within the Great Barrier Reef catchments. Global Change Biology, 2021, 27, 3257-3271.	4.2	12
27	Accommodating complexities: Enhancing understanding of the impacts of seaâ€level rise. A commentary on Kerrylee Rogers' â€~Accommodation space as a framework for assessing the response of mangroves to relative seaâ€level rise' Singapore Journal of Tropical Geography, 2021, 42, 190-193.	0.6	1
28	Harvesting water from unsaturated atmospheres: deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, <i>Avicennia marina</i> . New Phytologist, 2021, 231, 1401-1414.	3.5	30
29	Factors Determining Seagrass Blue Carbon Across Bioregions and Geomorphologies. Global Biogeochemical Cycles, 2021, 35, e2021GB006935.	1.9	34
30	Financial incentives for large-scale wetland restoration: Beyond markets to common asset trusts. One Earth, 2021, 4, 937-950.	3.6	32
31	Plant–soil feedbacks in mangrove ecosystems: establishing links between empirical and modelling studies. Trees - Structure and Function, 2021, 35, 1423-1438.	0.9	7
32	Large conservation opportunities exist in >90% of tropic-subtropic coastal habitats adjacent to cities. One Earth, 2021, 4, 1004-1015.	3.6	7
33	Estimating blue carbon sequestration under coastal management scenarios. Science of the Total Environment, 2021, 777, 145962.	3.9	31
34	Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale. Science of the Total Environment, 2021, 782, 146819.	3.9	12
35	Future-proofing conservation priorities for sea level rise in coastal urban ecosystems. Biological Conservation, 2021, 260, 109190.	1.9	13
36	Vulnerability of an arid zone coastal wetland landscape to sea level rise and intense storms. Limnology and Oceanography, 2021, 66, 3976-3989.	1.6	7

#	Article	IF	CITATIONS
37	Modelling mangrove forest structure and species composition over tidal inundation gradients: The feedback between plant water use and porewater salinity in an arid mangrove ecosystem. Agricultural and Forest Meteorology, 2021, 308-309, 108547.	1.9	10
38	National scale predictions of contemporary and future blue carbon storage. Science of the Total Environment, 2021, 800, 149573.	3.9	24
39	Policy solutions to facilitate restoration in coastal marine environments. Marine Policy, 2021, 134, 104789.	1.5	16
40	Investing in Blue Natural Capital to Secure a Future for the Red Sea Ecosystems. Frontiers in Marine Science, 2021, 7, .	1.2	19
41	Landcover change in mangroves of Fiji: Implications for climate change mitigation and adaptation in the Pacific. Environmental Challenges, 2021, 2, 100018.	2.0	15
42	Decomposition of mangrove roots depends on the bulk density they grew in. Plant and Soil, 2021, 460, 177-187.	1.8	6
43	Managing sediment dynamics through reintroduction of tidal flow for mangrove restoration in abandoned aquaculture ponds. , 2021, , 563-582.		2
44	Blue carbon as a natural climate solution. Nature Reviews Earth & Environment, 2021, 2, 826-839.	12.2	261
45	Drivers of habitat partitioning among three Quercus species along a hydrologic gradient. Tree Physiology, 2020, 40, 142-157.	1.4	2
46	Short-lived effects of nutrient enrichment on Avicennia germinans decomposition in a saltmarsh-mangrove ecotone. Estuarine, Coastal and Shelf Science, 2020, 235, 106598.	0.9	13
47	Ecological effects of nonâ€native species in marine ecosystems relate to coâ€occurring anthropogenic pressures. Global Change Biology, 2020, 26, 1248-1258.	4.2	20
48	Plasticity in the Above- and Below-Ground Development of Mangrove Seedlings in Response to Variation in Soil Bulk Density. Estuaries and Coasts, 2020, 43, 111-119.	1.0	7
49	Organic Carbon Stocks of Mexican Montane Habitats: Variation Among Vegetation Types and Land-Use. Frontiers in Environmental Science, 2020, 8, .	1.5	7
50	Major drivers of coastal aquaculture expansion in Southeast Asia. Ocean and Coastal Management, 2020, 198, 105364.	2.0	25
51	Variable Impacts of Climate Change on Blue Carbon. One Earth, 2020, 3, 195-211.	3.6	106
52	Priorities and Motivations of Marine Coastal Restoration Research. Frontiers in Marine Science, 2020, 7, .	1.2	58
53	A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports, 2020, 10, 14652.	1.6	94
54	Blue Restoration – Building Confidence and Overcoming Barriers. Frontiers in Marine Science, 2020, 7,	1.2	28

#	Article	IF	CITATIONS
55	Regional variation in δ <scp>¹³C</scp> of coral reef macroalgae. Limnology and Oceanography, 2020, 65, 2291-2302.	1.6	14
56	The interplay between vegetation and water in mangroves: new perspectives for mangrove stand modelling and ecological research. Wetlands Ecology and Management, 2020, 28, 697-712.	0.7	24
57	Blue carbon from the past forecasts the future. Science, 2020, 368, 1050-1052.	6.0	14
58	Rebuilding marine life. Nature, 2020, 580, 39-51.	13.7	560
59	Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and landâ€use change. Global Change Biology, 2020, 26, 3028-3039.	4.2	80
60	UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?. Frontiers in Marine Science, 2020, 7, .	1.2	181
61	Harnessing Big Data to Support the Conservation and Rehabilitation of Mangrove Forests Globally. One Earth, 2020, 2, 429-443.	3.6	63
62	Comparison of sediment-plate methods to measure accretion rates in an estuarine mangrove forest (New Zealand). Estuarine, Coastal and Shelf Science, 2020, 236, 106642.	0.9	8
63	Reply to: Indiscriminate data aggregation in ecological meta-analysis underestimates impacts of invasive species. Nature Ecology and Evolution, 2020, 4, 315-317.	3.4	1
64	A national approach to greenhouse gas abatement through blue carbon management. Global Environmental Change, 2020, 63, 102083.	3.6	69
65	March of the mangroves: Drivers of encroachment into southern temperate saltmarsh. Estuarine, Coastal and Shelf Science, 2020, 240, 106776.	0.9	31
66	Variation in the elemental stoichiometry of the coral–zooxanthellae symbiosis. Coral Reefs, 2020, 39, 1071-1079.	0.9	11
67	Reconstructing extreme climatic and geochemical conditions during the largest natural mangrove dieback on record. Biogeosciences, 2020, 17, 4707-4726.	1.3	14
68	The State of the World's Mangrove Forests: Past, Present, and Future. Annual Review of Environment and Resources, 2019, 44, 89-115.	5.6	386
69	Land tenure considerations are key to successful mangrove restoration. Nature Ecology and Evolution, 2019, 3, 1135-1135.	3.4	49
70	Decreasing carbonate load of seagrass leaves with increasing latitude. Aquatic Botany, 2019, 159, 103147.	0.8	3
71	Soil Structure and Its Relationship to Shallow Soil Subsidence in Coastal Wetlands. Estuaries and Coasts, 2019, 42, 2114-2123.	1.0	10
72	The future of Blue Carbon science. Nature Communications, 2019, 10, 3998.	5.8	406

#	Article	IF	CITATIONS
73	Night and day: Shrinking and swelling of stems of diverse mangrove species growing along environmental gradients. PLoS ONE, 2019, 14, e0221950.	1.1	8
74	Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 2019, 10, 4313.	5.8	150
75	Landscape Evolution of a Fluvial Sediment-Rich Avicennia marina Mangrove Forest: Insights from Seasonal and Inter-annual Surface-Elevation Dynamics. Ecosystems, 2019, 22, 1232-1255.	1.6	24
76	Effects of crab burrows on sediment characteristics in a Ceriops australis-dominated mangrove forest. Estuarine, Coastal and Shelf Science, 2019, 218, 334-339.	0.9	10
77	Fingerprinting Blue Carbon: Rationale and Tools to Determine the Source of Organic Carbon in Marine Depositional Environments. Frontiers in Marine Science, 2019, 6, .	1.2	75
78	Motivations, success, and cost of coral reef restoration. Restoration Ecology, 2019, 27, 981-991.	1.4	92
79	Global patterns of tree stem growth and stand aboveground wood production in mangrove forests. Forest Ecology and Management, 2019, 444, 382-392.	1.4	33
80	Carbon sequestration and fluxes of restored mangroves in abandoned aquaculture ponds. Journal of the Indian Ocean Region, 2019, 15, 177-192.	0.2	35
81	Are the ecological effects of the "worst―marine invasive species linked with scientific and media attention?. PLoS ONE, 2019, 14, e0215691.	1.1	5
82	Natural and Regenerated Saltmarshes Exhibit Similar Soil and Belowground Organic Carbon Stocks, Root Production and Soil Respiration. Ecosystems, 2019, 22, 1803-1822.	1.6	25
83	Role of carbonate burial in Blue Carbon budgets. Nature Communications, 2019, 10, 1106.	5.8	105
84	Dimensions of Blue Carbon and emerging perspectives. Biology Letters, 2019, 15, 20180781.	1.0	261
85	Global ecological impacts of marine exotic species. Nature Ecology and Evolution, 2019, 3, 787-800.	3.4	128
86	The roots of blue carbon: responses of mangrove stilt roots to variation in soil bulk density. Biology Letters, 2019, 15, 20180866.	1.0	14
87	Legal barriers and enablers for reintroducing tides: An Australian case study in reconverting ponded pasture for climate change mitigation. Land Use Policy, 2019, 88, 104192.	2.5	17
88	SDG 14: Life below Water – Impacts on Mangroves. , 2019, , 445-481.		8
89	Conservation of Blue Carbon Ecosystems for Climate Change Mitigation and Adaptation. , 2019, , 965-996.		27
90	Groundwater enhances aboveâ€ground growth in mangroves. Journal of Ecology, 2019, 107, 1120-1128.	1.9	32

6

#	Article	IF	CITATIONS
91	Oxygen Consumption and Sulfate Reduction in Vegetated Coastal Habitats: Effects of Physical Disturbance. Frontiers in Marine Science, 2019, 6, .	1.2	39
92	Modelling above ground biomass accumulation of mangrove plantations in Vietnam. Forest Ecology and Management, 2019, 432, 376-386.	1.4	24
93	Habitat characteristics provide insights of carbon storage in seagrass meadows. Marine Pollution Bulletin, 2018, 134, 106-117.	2.3	145
94	Seagrass Organic Carbon Stocks Show Minimal Variation Over Short Time Scales in a Heterogeneous Subtropical Seascape. Estuaries and Coasts, 2018, 41, 1732-1743.	1.0	9
95	The role of socio-economic factors in planning and managing urban ecosystem services. Ecosystem Services, 2018, 31, 102-110.	2.3	119
96	Vertical accretion and carbon burial rates in subtropical seagrass meadows increased following anthropogenic pressure from European colonisation. Estuarine, Coastal and Shelf Science, 2018, 202, 40-53.	0.9	32
97	Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina. Tree Physiology, 2018, 38, 979-991.	1.4	62
98	Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. Estuarine, Coastal and Shelf Science, 2018, 200, 194-201.	0.9	57
99	Avoided emissions and conservation of scrub mangroves: potential for a Blue Carbon project in the Gulf of California, Mexico. Biology Letters, 2018, 14, 20180400.	1.0	21
100	Reviews and syntheses: ²¹⁰ Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – setting the record straight. Biogeosciences, 2018, 15, 6791-6818.	1.3	121
101	Mangrove mortality in a changing climate: An overview. Estuarine, Coastal and Shelf Science, 2018, 215, 241-249.	0.9	154
102	The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia. Hydrology and Earth System Sciences, 2018, 22, 5281-5298.	1.9	53
103	Predators Shape Sedimentary Organic Carbon Storage in a Coral Reef Ecosystem. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	31
104	Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. Nature Communications, 2018, 9, 3096.	5.8	81
105	The effect of heterogeneous soil bulk density on root growth of field-grown mangrove species. Plant and Soil, 2018, 432, 91-105.	1.8	30
106	Reducing risk in reserve selection using Modern Portfolio Theory: Coastal planning under seaâ€level rise. Journal of Applied Ecology, 2018, 55, 2193-2203.	1.9	28
107	Benthic meiofaunal community response to the cascading effects of herbivory within an algal halo system of the Great Barrier Reef. PLoS ONE, 2018, 13, e0193932.	1.1	16
108	Climate Regulation: Salt Marshes and Blue Carbon. , 2018, , 1185-1196.		2

#	Article	IF	CITATIONS
109	The effects of elevated <scp>CO</scp> ₂ and eutrophication on surface elevation gain in a European salt marsh. Global Change Biology, 2017, 23, 881-890.	4.2	24
110	Factors affecting tolerance to herbivory in a calcifying alga on coral reefs. Marine Biology, 2017, 164, 1.	0.7	2
111	The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands. Plant and Soil, 2017, 416, 193-204.	1.8	49
112	Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia. Global Change Biology, 2017, 23, 4222-4234.	4.2	67
113	Response to "Rebutting the inclined analyses on the costâ€effectiveness and feasibility of coral reef restoration― Ecological Applications, 2017, 27, 1974-1980.	1.8	3
114	Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment, 2017, 15, 257-265.	1.9	145
115	lsotopic signatures of stem water reveal differences in water sources accessed by mangrove tree species. Hydrobiologia, 2017, 803, 133-145.	1.0	26
116	Seagrass morphometrics at species level in Moreton Bay, Australia from 2012 to 2013. Scientific Data, 2017, 4, 170060.	2.4	4
117	Using eDNA to determine the source of organic carbon in seagrass meadows. Limnology and Oceanography, 2017, 62, 1254-1265.	1.6	52
118	Carbon sequestration by Australian tidal marshes. Scientific Reports, 2017, 7, 44071.	1.6	112
119	Interactive effects of climate and nutrient enrichment on patterns of herbivory by different feeding guilds in mangrove forests. Global Ecology and Biogeography, 2017, 26, 1326-1338.	2.7	6
120	Short-term microbial respiration in an arid zone mangrove soil is limited by availability of gallic acid, phosphorus and ammonium. Soil Biology and Biochemistry, 2017, 115, 73-81.	4.2	9
121	Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 2017, 7, 523-528.	8.1	412
122	Mangrove dieback during fluctuating sea levels. Scientific Reports, 2017, 7, 1680.	1.6	165
123	Costs and Opportunities for Preserving Coastal Wetlands under Sea Level Rise. Conservation Letters, 2017, 10, 49-57.	2.8	35
124	Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds. Frontiers in Marine Science, 2017, 4, .	1.2	85
125	The cost and feasibility of marine coastal restoration. Ecological Applications, 2016, 26, 1055-1074.	1.8	495
126	Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnology and Oceanography, 2016, 61, 938-952.	1.6	139

#	Article	IF	CITATIONS
127	The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Scientific Data, 2016, 3, 160017.	2.4	189
128	Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia. Marine Pollution Bulletin, 2016, 107, 355-363.	2.3	39
129	Evaluating deep subsidence in a rapidly-accreting mangrove forest using GPS monitoring of surface-elevation benchmarks and sedimentary records. Marine Geology, 2016, 380, 205-218.	0.9	22
130	Reconciling Development and Conservation under Coastal Squeeze from Rising Sea Level. Conservation Letters, 2016, 9, 361-368.	2.8	43
131	The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans. Photosynthesis Research, 2016, 129, 159-170.	1.6	41
132	The effect of structurally complex corals and herbivory on the dynamics of Halimeda. Coral Reefs, 2016, 35, 597-609.	0.9	21
133	The Physiology of Mangrove Trees with Changing Climate. Tree Physiology, 2016, , 149-179.	0.9	93
134	Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annual Review of Marine Science, 2016, 8, 243-266.	5.1	310
135	Indonesia's blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetlands Ecology and Management, 2016, 24, 3-13.	0.7	138
136	Climate Regulation: Salt Marshes and Blue Carbon. , 2016, , 1-12.		1
137	Mangroveâ€forest evolution in a sedimentâ€rich estuarine system: opportunists or agents of geomorphic change?. Earth Surface Processes and Landforms, 2015, 40, 1672-1687.	1.2	77
138	Carbon Budgets for Caribbean Mangrove Forests of Varying Structure and with Phosphorus Enrichment. Forests, 2015, 6, 3528-3546.	0.9	26
139	Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences, 2015, 12, 4993-5003.	1.3	104
140	The response of the mangrove Avicennia marina to heterogeneous salinity measured using a split-root approach. Plant and Soil, 2015, 393, 297-305.	1.8	36
141	Spatial and temporal variability of seagrass at Lizard Island, Great Barrier Reef. Botanica Marina, 2015, 58, 35-49.	0.6	14
142	The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove <i>Avicennia germinans</i> over a range of salinities. Physiologia Plantarum, 2015, 154, 358-368.	2.6	47
143	Reconsidering Ocean Calamities. BioScience, 2015, 65, 130-139.	2.2	55
144	Ocean Calamities: Delineating the Boundaries between Scientific Evidence and Belief. BioScience, 2015, 65, 746-747.	2.2	2

#	Article	IF	CITATIONS
145	Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system. Oecologia, 2015, 179, 863-876.	0.9	31
146	Nitrogen sharing and water source partitioning co-occur in estuarine wetlands. Functional Plant Biology, 2015, 42, 410.	1.1	5
147	Limits to seaward expansion of mangroves: Translating physical disturbance mechanisms into seedling survival gradients. Journal of Experimental Marine Biology and Ecology, 2015, 467, 16-25.	0.7	36
148	The use of fresh and saline water sources by the mangrove Avicennia marina. Hydrobiologia, 2015, 745, 59-68.	1.0	69
149	Predators help protect carbon stocks in blue carbon ecosystems. Nature Climate Change, 2015, 5, 1038-1045.	8.1	181
150	Nutrient enrichment intensifies hurricane impact in scrub mangrove ecosystems in the Indian River Lagoon, Florida, USA. Ecology, 2015, 96, 2960-2972.	1.5	55
151	The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 2015, 526, 559-563.	13.7	606
152	Sea level and turbidity controls on mangrove soil surface elevation change. Estuarine, Coastal and Shelf Science, 2015, 153, 1-9.	0.9	72
153	Influence of temporospatial variation in sap flux density on estimates of whole-tree water use in Avicennia marina. Trees - Structure and Function, 2015, 29, 215-222.	0.9	18
154	Regulation of water balance in mangroves. Annals of Botany, 2015, 115, 385-395.	1.4	182
155	Selecting costâ€effective areas for restoration of ecosystem services. Conservation Biology, 2015, 29, 493-502.	2.4	100
156	Maps, laws and planning policy: Working with biophysical and spatial uncertainty in the case of sea level rise. Environmental Science and Policy, 2014, 44, 247-257.	2.4	23
157	How mangrove forests adjust to rising sea level. New Phytologist, 2014, 202, 19-34.	3.5	489
158	Variation in elemental stoichiometry and <scp>RNA</scp> : <scp>DNA</scp> in four phyla of benthic organisms from coral reefs. Functional Ecology, 2014, 28, 1299-1309.	1.7	8
159	Assessment of vegetation and soil conditions in restored mangroves interrupted by severe tropical typhoon †Chan-hom' in the Philippines. Hydrobiologia, 2014, 733, 85-102.	1.0	40
160	Adapting to climate change in South East Queensland, Australia. Regional Environmental Change, 2014, 14, 429-433.	1.4	5
161	Variable effects of nutrient enrichment on soil respiration in mangrove forests. Plant and Soil, 2014, 379, 135-148.	1.8	41
162	Novelty Trumps Loss in Global Biodiversity. Science, 2014, 344, 266-267.	6.0	26

10

#	Article	IF	CITATIONS
163	Historical analysis of mangrove leaf traits throughout the 19th and 20th centuries reveals differential responses to increases in atmospheric <scp><ccp>CO₂</ccp></scp> . Global Ecology and Biogeography, 2014, 23, 1209-1214.	2.7	26
164	Moving beyond the conceptual: specificity in regional climate change adaptation actions for biodiversity in South East Queensland, Australia. Regional Environmental Change, 2014, 14, 435-447.	1.4	26
165	Contemporary Rates of Carbon Sequestration Through Vertical Accretion of Sediments in Mangrove Forests and Saltmarshes of South East Queensland, Australia. Estuaries and Coasts, 2014, 37, 763-771.	1.0	108
166	Interdependency of tropical marine ecosystems in response to climate change. Nature Climate Change, 2014, 4, 724-729.	8.1	75
167	Long-term versus daily stem diameter variation in co-occurring mangrove species: Environmental versus ecophysiological drivers. Agricultural and Forest Meteorology, 2014, 192-193, 51-58.	1.9	31
168	Mammalian herbivores in Australia transport nutrients from terrestrial to marine ecosystems via mangroves. Journal of Tropical Ecology, 2014, 30, 179-188.	0.5	20
169	Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Global Change Biology, 2013, 19, 2569-2583.	4.2	99
170	Latitudinal Patterns of Herbivory in Mangrove Forests: Consequences of Nutrient Over-Enrichment. Ecosystems, 2013, 16, 1203-1215.	1.6	24
171	Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 2013, 720, 1-18.	1.0	101
172	Water use patterns of estuarine vegetation in a tidal creek system. Oecologia, 2013, 172, 485-494.	0.9	41
173	The anatomical basis of the link between density and mechanical strength in mangrove branches. Functional Plant Biology, 2013, 40, 400.	1.1	15
174	Insuring Mangrove Forests for Their Role in Mitigating Coastal Erosion and Storm -Surge: An Australian Case Study. Wetlands, 2013, 33, 279-289.	0.7	29
175	â€~Blue carbon' projects for the collective good. Carbon Management, 2013, 4, 477-479.	1.2	15
176	INFLUENCE OF SPATIAL VARIATION IN SAP FLUX DENSITY ON ESTIMATES OF WHOLE-TREE WATER USE IN AVICENNIA MARINA. Acta Horticulturae, 2013, , 101-106.	0.1	0
177	CO2 Efflux from Shrimp Ponds in Indonesia. PLoS ONE, 2013, 8, e66329.	1.1	69
178	Radiocarbon Dating and Wood Density Chronologies of Mangrove Trees in Arid Western Australia. PLoS ONE, 2013, 8, e80116.	1.1	16
179	Macroalgal species richness and assemblage composition of the Great Barrier Reef seabed. Marine Ecology - Progress Series, 2013, 492, 69-83.	0.9	12
180	The impact of a locust plague on mangroves of the arid Western Australia coast. Journal of Tropical Ecology, 2012, 28, 307-311.	0.5	11

#	Article	IF	CITATIONS
181	Nutrient exchange of extensive cyanobacterial mats in an arid subtropical wetland. Marine and Freshwater Research, 2012, 63, 457.	0.7	8
182	Terrestrial–marine connectivity: Patterns of terrestrial soil carbon deposition in coastal sediments determined by analysis of glomalin related soil protein. Limnology and Oceanography, 2012, 57, 1492-1502.	1.6	55
183	Variation in wood density and anatomy in a widespread mangrove species. Trees - Structure and Function, 2012, 26, 1555-1563.	0.9	41
184	Integration, synthesis and climate change adaptation: a narrative based on coastal wetlands at the regional scale. Regional Environmental Change, 2012, 12, 581-593.	1.4	30
185	Lightâ€dependent maintenance of hydraulic function in mangrove branches: do xylary chloroplasts play a role in embolism repair?. New Phytologist, 2012, 195, 40-46.	3.5	63
186	Opportunities for improving phosphorusâ€use efficiency in crop plants. New Phytologist, 2012, 195, 306-320.	3.5	702
187	Differential responses of the mangrove Avicennia marina to salinity and abscisic acid. Functional Plant Biology, 2012, 39, 1038.	1.1	19
188	The effect of nutrient enrichment on the growth, nucleic acid concentrations, and elemental stoichiometry of coral reef macroalgae. Ecology and Evolution, 2012, 2, 1985-1995.	0.8	27
189	Sensitivity of dissolved organic carbon exchange and sediment bacteria to water quality in mangrove forests. Hydrobiologia, 2012, 691, 239-253.	1.0	16
190	Integrating Climate and Ocean Change Vulnerability into Conservation Planning. Coastal Management, 2012, 40, 651-672.	1.0	32
191	A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO ₂ . Frontiers in Ecology and the Environment, 2011, 9, 552-560.	1.9	2,354
192	CO2 Efflux from Cleared Mangrove Peat. PLoS ONE, 2011, 6, e21279.	1.1	131
193	Intense storms and the delivery of materials that relieve nutrient limitations in mangroves of an arid zone estuary. Functional Plant Biology, 2011, 38, 514.	1.1	60
194	The effects of nutrient availability on tolerance to herbivory in a brown seaweed. Journal of Ecology, 2011, 99, 1540-1550.	1.9	28
195	Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Diversity and Distributions, 2011, 17, 1225-1233.	1.9	84
196	Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia, 2011, 663, 23-50.	1.0	145
197	The Role of Surface and Subsurface Processes in Keeping Pace with Sea Level Rise in Intertidal Wetlands of Moreton Bay, Queensland, Australia. Ecosystems, 2011, 14, 745-757.	1.6	84
198	Effect of geomorphological setting and rainfall on nutrient exchange in mangroves during tidal inundation. Marine and Freshwater Research, 2010, 61, 1197.	0.7	44

#	Article	IF	CITATIONS
199	Mangrove Forest and Soil Development on a Rapidly Accreting Shore in New Zealand. Ecosystems, 2010, 13, 437-451.	1.6	124
200	Elemental composition and productivity of cyanobacterial mats in an arid zone estuary in north Western Australia. Wetlands Ecology and Management, 2010, 18, 37-47.	0.7	27
201	Sedimentation within and among mangrove forests along a gradient of geomorphological settings. Estuarine, Coastal and Shelf Science, 2010, 86, 21-30.	0.9	161
202	THE USE OF NEAR INFRARED REFLECTANCE SPECTROMETRY FOR CHARACTERIZATION OF BROWN ALGAL TISSUE1. Journal of Phycology, 2010, 46, 937-946.	1.0	20
203	Nitrogen fertilization enhances water-use efficiency in a saline environment. Plant, Cell and Environment, 2010, 33, 344-357.	2.8	50
204	Relationships among RNAâ€f:â€fDNA ratio, growth and elemental stoichiometry in mangrove trees. Functional Ecology, 2010, 24, 1064-1072.	1.7	53
205	Biocomplexity in Mangrove Ecosystems. Annual Review of Marine Science, 2010, 2, 395-417.	5.1	328
206	Nutrition of mangroves. Tree Physiology, 2010, 30, 1148-1160.	1.4	429
207	The Ecology and Management of Temperate Mangroves. , 2010, , 43-160.		30
208	The Ecology and Management of Temperate Mangroves. Oceanography and Marine Biology, 2010, , 43-160.	1.0	72
209	Changes in ectomycorrhizal community structure on two containerized oak hosts across an experimental hydrologic gradient. Mycorrhiza, 2009, 19, 133-142.	1.3	46
210	Nutrient Enrichment Increases Mortality of Mangroves. PLoS ONE, 2009, 4, e5600.	1.1	165
211	Soil Respiration and Belowground Carbon Allocation in Mangrove Forests. Ecosystems, 2008, 11, 342-354.	1.6	177
212	Growth and physiology of nuisance alga Hincksia sordida during a bloom in South East Queensland, Australia. Journal of Experimental Marine Biology and Ecology, 2008, 363, 84-88.	0.7	9
213	Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany, 2008, 89, 105-127.	0.8	576
214	Sediment Processes and Mangrove-Habitat Expansion on a Rapidly-Prograding Muddy Coast, New Zealand. , 2007, , .		29
215	Testing the Growth Rate vs. Geochemical Hypothesis for latitudinal variation in plant nutrients. Ecology Letters, 2007, 10, 1154-1163.	3.0	135
216	Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia, 2007, 153, 633-641.	0.9	125

#	Article	IF	CITATIONS
217	Nutrient Addition Differentially Affects Ecological Processes of Avicennia germinans in Nitrogen versus Phosphorus Limited Mangrove Ecosystems. Ecosystems, 2007, 10, 347-359.	1.6	106
218	Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability. Tree Physiology, 2006, 26, 1601-1606.	1.4	43
219	Variation in hydraulic conductivity of mangroves: influence of species, salinity, and nitrogen and phosphorus availability. Physiologia Plantarum, 2006, 127, 457-464.	2.6	68
220	Differences in plant function in phosphorus―and nitrogenâ€ ŀ imited mangrove ecosystems. New Phytologist, 2006, 172, 514-522.	3.5	92
221	Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle. Plant, Cell and Environment, 2006, 29, 793-802.	2.8	102
222	Climate change manipulations show Antarctic flora is more strongly affected by elevated nutrients than water. Global Change Biology, 2006, 12, 1800-1812.	4.2	65
223	Some like it wet — biological characteristics underpinning tolerance of extreme water stress events in Antarctic bryophytes. Functional Plant Biology, 2006, 33, 443.	1.1	77
224	Links between tree species, symbiotic fungal diversity and ecosystem functioning in simplified tropical ecosystems. New Phytologist, 2005, 167, 219-228.	3.5	50
225	Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici. Global Change Biology, 2005, 11, 476-489.	4.2	82
226	Photosynthetic characteristics of dwarf and fringe Rhizophora mangle L. in a Belizean mangrove. Plant, Cell and Environment, 2004, 27, 769-780.	2.8	53
227	Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. Journal of Ecology, 2004, 92, 278-287.	1.9	233
228	Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: an example from a tropical rain forest soil. Soil Biology and Biochemistry, 2004, 36, 1009-1012.	4.2	109
229	The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Functional Ecology, 2004, 18, 25-33.	1.7	181
230	Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia, 2003, 134, 405-414.	0.9	210
231	Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest. Oecologia, 2003, 134, 455-462.	0.9	96
232	Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia, 2003, 135, 268-279.	0.9	134
233	CHARACTER RELEASE FOLLOWING EXTINCTION IN A CARIBBEAN REEF CORAL SPECIES COMPLEX. Evolution; International Journal of Organic Evolution, 2002, 56, 479.	1.1	1
234	HETEROGENEITY IN INOCULUM POTENTIAL AND EFFECTIVENESS OF ARBUSCULAR MYCORRHIZAL FUNGI. Ecology, 2002, 83, 823-832.	1.5	28

#	Article	IF	CITATIONS
235	Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia, 2002, 133, 62-69.	0.9	61
236	Surface reflectance properties of Antarctic moss and their relationship to plant species, pigment composition and photosynthetic function. Plant, Cell and Environment, 2002, 25, 1239-1250.	2.8	95
237	CHARACTER RELEASE FOLLOWING EXTINCTION IN A CARIBBEAN REEF CORAL SPECIES COMPLEX. Evolution; International Journal of Organic Evolution, 2002, 56, 479-501.	1.1	43
238	Influence of Salinity on Photosynthesis of Halophytes. , 2002, , 315-339.		42
239	Responses of model communities of two tropical tree species to elevated atmospheric CO2 : growth on unfertilized soil. Flora: Morphology, Distribution, Functional Ecology of Plants, 2000, 195, 289-302.	0.6	26
240	Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecology Letters, 2000, 3, 106-113.	3.0	153
241	Desiccation tolerance of three moss species from continental Antarctica. Functional Plant Biology, 2000, 27, 379.	1.1	31
242	Effects of elevated CO2 concentrations on photosynthesis, growth and reproduction of branches of the tropical canopy tree species, Luehea seemannii Tr. & Planch Plant, Cell and Environment, 1999, 22, 49-59.	2.8	52
243	Effects of Elevated CO2 and Defoliation on Compensatory Growth and Photosynthesis of Seedlings in a Tropical Tree, Copaifera aromatica1. Biotropica, 1999, 31, 279-287.	0.8	24
244	Growth responses of seedlings of two neotropical pioneer species to simulated forest gap environments. Journal of Tropical Ecology, 1999, 15, 827-839.	0.5	40
245	Growth responses of seedlings of early and late successional tropical forest trees to elevated atmospheric CO2. Flora: Morphology, Distribution, Functional Ecology of Plants, 1999, 194, 221-227.	0.6	27
246	Responses of communities of tropical tree species to elevated CO 2 in a forest clearing. Oecologia, 1998, 116, 207-218.	0.9	50
247	Photoinhibition in tropical forest understorey species with short- and long-lived leaves. Functional Ecology, 1998, 12, 553-560.	1.7	35
248	Observations of the Photosynthetic Physiology of Tree Species within the C3 Monocotyledon Genus Pandanus, and Comparison with Dicotyledon C3 Tree Species. Australian Journal of Botany, 1998, 46, 103.	0.3	1
249	Symbiotic Vesicular-Arbuscular Mycorrhizae Influence Maximum Rates of Photosynthesis in Tropical Tree Seedlings Grown Under Elevated CO2. Functional Plant Biology, 1997, 24, 185.	1.1	23
250	Oxygen-dependent electron transport and protection from photoinhibition in leaves of tropical tree species. Planta, 1996, 198, 580-587.	1.6	75
251	Photoinhibition of photosynthesis on a coral reef. Plant, Cell and Environment, 1996, 19, 825-836.	2.8	78
252	Growth Responses to Vesicular-Arbuscular Mycorrhizae and Elevated CO 2 in Seedlings of a Tropical Tree, Beilschmiedia pendula. Functional Ecology, 1996, 10, 662.	1.7	56

#	Article	IF	CITATIONS
253	Photoinhibition in the Antarctic moss Grimmia antarctici Card when exposed to cycles of freezing and thawing. Plant, Cell and Environment, 1995, 18, 1395-1402.	2.8	46
254	Reversible Photoinhibition in Antarctic Moss during Freezing and Thawing. Plant Physiology, 1995, 109, 955-961.	2.3	60
255	Photoinhibition and recovery in tropical plant species: response to disturbance. Oecologia, 1994, 97, 297-307.	0.9	142
256	Wax as a Mechanism for Protection against Photoinhibition - A Study ofCotyledon orbiculata. Botanica Acta, 1993, 106, 307-312.	1.6	77
257	Distribution and accumulation of ultraviolet-radiation-absorbing compounds in leaves of tropical mangroves. Planta, 1992, 188, 143-154.	1.6	118
258	Influence of solar radiation and leaf angle on leaf xanthophyll concentrations in mangroves. Oecologia, 1992, 91, 518-525.	0.9	73
259	The analysis of photosynthetic performance in leaves under field conditions: A case study using Bruguiera mangroves. Photosynthesis Research, 1991, 29, 11-22.	1.6	84
260	The cost and feasibility of marine coastal restoration. , 0, , .		16
261	A Guide to International Climate Mitigation Policy and Finance Frameworks Relevant to the Protection and Restoration of Blue Carbon Ecosystems. Frontiers in Marine Science, 0, 9, .	1.2	14