
Giovanna De Chiara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3458162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of HSV-1 in Alzheimer's disease pathogenesis: A challenge for novel preventive/therapeutic strategies. Current Opinion in Pharmacology, 2022, 63, 102200.	3.5	28
2	The Inhibition of DNA Viruses by the Amphibian Antimicrobial Peptide Temporin G: A Virological Study Addressing HSV-1 and JPCyV. International Journal of Molecular Sciences, 2022, 23, 7194.	4.1	8
3	SARS-CoV-2: Comparative analysis of different RNA extraction methods. Journal of Virological Methods, 2021, 287, 114008.	2.1	51
4	Ca ²⁺ â€dependent release of <scp>ATP</scp> from astrocytes affects herpes simplex virus type 1 infection of neurons. Glia, 2021, 69, 201-215.	4.9	11
5	Investigation of Commiphora myrrha (Nees) Engl. Oil and Its Main Components for Antiviral Activity. Pharmaceuticals, 2021, 14, 243.	3.8	18
6	Recurrent Herpes Simplex Virus Type 1 (HSV-1) Infection Modulates Neuronal Aging Marks in In Vitro and In Vivo Models. International Journal of Molecular Sciences, 2021, 22, 6279.	4.1	12
7	Influenza Virus Down-Modulates G6PD Expression and Activity to Induce Oxidative Stress and Promote Its Replication. Frontiers in Cellular and Infection Microbiology, 2021, 11, 804976.	3.9	31
8	Herpes Simplex Virus-1 in the Brain: The Dark Side of a Sneaky Infection. Trends in Microbiology, 2020, 28, 808-820.	7.7	132
9	The "Three Italy―of the COVID-19 epidemic and the possible involvement of SARS-CoV-2 in triggering complications other than pneumonia. Journal of NeuroVirology, 2020, 26, 311-323.	2.1	19
10	Multiple Herpes Simplex Virus-1 (HSV-1) Reactivations Induce Protein Oxidative Damage in Mouse Brain: Novel Mechanisms for Alzheimer's Disease Progression. Microorganisms, 2020, 8, 972.	3.6	17
11	Experimental Data Based Machine Learning Classification Models with Predictive Ability to Select in Vitro Active Antiviral and Non-Toxic Essential Oils. Molecules, 2020, 25, 2452.	3.8	19
12	Herpes Simplex Virus Type-1 Infection Impairs Adult Hippocampal Neurogenesis via Amyloid-β Protein Accumulation. Stem Cells, 2019, 37, 1467-1480.	3.2	57
13	Recurrent herpes simplex virus-1 infection induces hallmarks of neurodegeneration and cognitive deficits in mice. PLoS Pathogens, 2019, 15, e1007617.	4.7	160
14	GSH-C4 Acts as Anti-inflammatory Drug in Different Models of Canonical and Cell Autonomous Inflammation Through NFκB Inhibition. Frontiers in Immunology, 2019, 10, 155.	4.8	21
15	A Novel Method to Titrate Herpes Simplex Virus-1 (HSV-1) Using Laser-Based Scanning of Near-Infrared Fluorophores Conjugated Antibodies. Frontiers in Microbiology, 2017, 8, 1085.	3.5	12
16	Herpes Simplex Virus-Type1 (HSV-1) Impairs DNA Repair in Cortical Neurons. Frontiers in Aging Neuroscience, 2016, 8, 242.	3.4	24
17	Herpes Simplex Virus type-1 infection induces synaptic dysfunction in cultured cortical neurons via GSK-3 activation and intraneuronal amyloid-l² protein accumulation. Scientific Reports, 2015, 5, 15444.	3.3	79
18	Herpes simplex virus type 1 infection in neurons leads to production and nuclear localization of APP intracellular domain (AICD): implications for Alzheimer's disease pathogenesis. Journal of NeuroVirology, 2015, 21, 480-490.	2.1	42

GIOVANNA DE CHIARA

#	Article	IF	CITATIONS
19	HSV-1 and Alzheimerââ,¬â"¢s disease: more than a hypothesis. Frontiers in Pharmacology, 2014, 5, 97.	3.5	89
20	Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity. Cell Death and Disease, 2012, 3, e339-e339.	6.3	48
21	Sublethal Doses of β-Amyloid Peptide Abrogate DNA-dependent Protein Kinase Activity. Journal of Biological Chemistry, 2012, 287, 2618-2631.	3.4	49
22	Infectious Agents and Neurodegeneration. Molecular Neurobiology, 2012, 46, 614-638.	4.0	189
23	HSV-1 promotes Ca2+-mediated APP phosphorylation and AÎ ² accumulation in rat cortical neurons. Neurobiology of Aging, 2011, 32, 2323.e13-2323.e26.	3.1	106
24	Glutamatergic neurotransmission in a mouse model of Niemann–Pick Type C Disease. Brain Research, 2011, 1396, 11-19.	2.2	26
25	Phosphorylation Changes of CaMKII, ERK1/2, PKB/Akt Kinases and CREB Activation During Early Long-Term Potentiation at Schaffer Collateral-CA1 Mouse Hippocampal Synapses. Neurochemical Research, 2010, 35, 239-246.	3.3	42
26	APP Processing Induced by Herpes Simplex Virus Type 1 (HSV-1) Yields Several APP Fragments in Human and Rat Neuronal Cells. PLoS ONE, 2010, 5, e13989.	2.5	121
27	Bcl-2 Expression and p38MAPK Activity in Cells Infected with Influenza A Virus. Journal of Biological Chemistry, 2009, 284, 16004-16015.	3.4	85
28	Influenza virus and redox mediated cell signaling: a complex network of virus/host interaction. New Microbiologica, 2007, 30, 367-75.	0.1	26
29	Bcl-2 Phosphorylation by p38 MAPK. Journal of Biological Chemistry, 2006, 281, 21353-21361.	3.4	179
30	Inhibition of Influenza A Virus Replication by Resveratrol. Journal of Infectious Diseases, 2005, 191, 1719-1729.	4.0	215
31	Nerve Growth Factor-dependent Survival of CESS B Cell Line Is Mediated by Increased Expression and Decreased Degradation of MAPK Phosphatase 1. Journal of Biological Chemistry, 2004, 279, 14016-14023.	3.4	28
32	Androgen receptor expression induces FGF2, FGF-binding protein production, and FGF2 release in prostate carcinoma cells: Role of FGF2 in growth, survival, and androgen receptor down-modulation. Prostate, 2002, 53, 310-321.	2.3	43
33	Nerve Growth Factor Inhibits Apoptosis in Memory B Lymphocytes via Inactivation of p38 MAPK, Prevention of Bcl-2 Phosphorylation, and Cytochrome c Release. Journal of Biological Chemistry, 2001, 276, 39027-39036.	3.4	106
34	NGF Withdrawal Induces Apoptosis in CESS B Cell Line through p38 MAPK Activation and Bcl-2 Phosphorylation. Biochemical and Biophysical Research Communications, 2000, 278, 753-759.	2.1	40
35	Interferon-α-Induced Inhibition of B16 Melanoma Cell Proliferation: Interference with the bFGF Autocrine Growth Circuit. Biochemical and Biophysical Research Communications, 1999, 262, 838-844.	2.1	16
36	A Formal Total Synthesis of (+)-Methyl Trachyloban-18-oate and (+)-Methyl 16-Oxo-17-norkauran-18-oate: Regio- and Diastereoselective Preparation of Methyl (13S)-13-Hydroxyisoatisiren-18-oate from (?)-Abietic Acid. Helvetica Chimica Acta, 1996, 79, 2035-2041.	1.6	11